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Arboricity

Arboricity of graph G is defined as follows:

a(G ) = max
S⊆V (G);|S|≥2

|E (S)|
|S | − 1

Nash-Williams Theorem
For every graph G , the minimal number of forests that G can be divided into is equal
to ⌈a(G )⌉.

Observation
Any planar graph G with n vertices has at most 3n − 6 edges.
Therefore a(G ) ≤ 3, so every planar graph can be divided into 3 forests.
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subgraph of maximum degree d .

This graph is (2, 3)-decomposable



A graph G is (k, d)-decomposable if it can be decomposed into k forests and one
subgraph of maximum degree d .

This graph is (2, 3)-decomposable



A graph G is (k, d)⋆-decomposable if it can be decomposed into k forests and one
forest of maximum degree d .

This graph is (2, 3)⋆-decomposable



A graph G is (k, d)⋆-decomposable if it can be decomposed into k forests and one
forest of maximum degree d .

This graph is (2, 3)⋆-decomposable



A graph G is [k, d ]⋆-decomposable if it can be decomposed into k forests and one
tree of maximum degree d .

This graph is [2, 3]⋆-decomposable



A graph G is [k, d ]⋆-decomposable if it can be decomposed into k forests and one
tree of maximum degree d .

This graph is [2, 3]⋆-decomposable



A graph G is (k, d)-decomposable if it can be decomposed into k forests and one
subgraph of maximum degree d .

A graph G is (k, d)⋆-decomposable if it can be decomposed into k forests and one
forest of maximum degree d .

A graph G is [k, d ]⋆-decomposable if it can be decomposed into k forests and one
tree of maximum degree d .



Nine Dragon Tree Theorem:
If for any graph G , there exist positive integers k and d such that:

a(G ) ≤ k +
d

k + d + 1
,

then G is (k , d)⋆-decomposable.

Notice that ⌈a(G )⌉ ≤ k + 1.



Girth of graph G is the length of the shortest cycle in G .

▶ Planar graphs with girth at least 8 are (1, 1)⋆-decomposable
▶ Planar graphs with girth at least 7 are (1, 2)⋆-decomposable
▶ Planar graphs with girth at least 5 are (1, 4)-decomposable

For every planar graph G with girth at least g we have a(G ) ≤ g
g−2
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a(G ) = max
S⊆V (G);|S|≥2

|E (S)|
|S | − 1

For planar triangulations a(G ) tends to 3.

Therefore Nine Dragon Tree Theorem does not give (2, d)⋆-decomposability of all
planar graphs for any fixed d .

a(G ) ≤ k +
d
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,

Gonçalves (2009):
Every planar graph is (2, 4)⋆-decomposable.
Some planar graphs are not (2, 3)-decomposable.
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Separating triangle

Planar triangulation is 4-connected if and only if it does not have any separating
triangles.
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Hamiltionian path.

In particular, G is [2, 2]⋆-decomposable.

Moreover some 4-connected planar triangulations are not (2, 1)-decomposable.
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Some 4-connected planar triangulations are not (2, 1)-decomposable.

Let G be a 4-connected planar triangulation on n ≥ 9 vertices.
Since G is triangulation it has 3n-6 edges.

Every n-vertex (2, 1)-decomposable graph decomposes into 2 forests and one matching,
therefore it has at most 2(n − 1) + n/2 edges.

For n ≥ 9:

3n-6 > 2(n-1) + n/2,

leading to contradiction
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