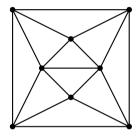
Decomposing 4-connected planar triangulations into two trees and one path by Kolja Knauer, Torsten Ueckerdt

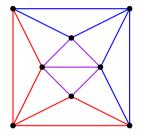
Piotr Kaliciak

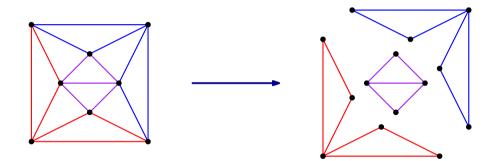
Jagiellonian University

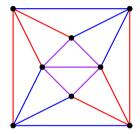
April 20, 2023

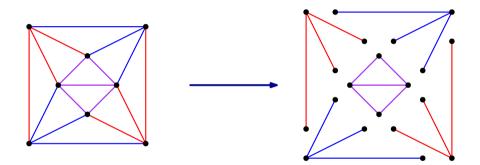
INTRODUCTION











Arboricity

Arboricity of graph *G* is defined as follows:

$$a(G) = \max_{S \subseteq V(G); |S| \ge 2} \frac{|E(S)|}{|S| - 1}$$

Arboricity

Arboricity of graph *G* is defined as follows:

$$a(G) = \max_{S \subseteq V(G); |S| \ge 2} \frac{|E(S)|}{|S| - 1}$$

Nash-Williams Theorem

For every graph G, the minimal number of forests that G can be divided into is equal to $\lceil a(G) \rceil$.

Arboricity

Arboricity of graph *G* is defined as follows:

$$a(G) = \max_{S \subseteq V(G); |S| \ge 2} \frac{|E(S)|}{|S| - 1}$$

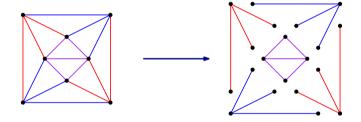
Nash-Williams Theorem

For every graph G, the minimal number of forests that G can be divided into is equal to $\lceil a(G) \rceil$.

Observation

Any planar graph G with n vertices has at most 3n - 6 edges. Therefore $a(G) \le 3$, so every planar graph can be divided into 3 forests. A graph G is (k, d)-decomposable if it can be decomposed into k forests and one subgraph of maximum degree d.

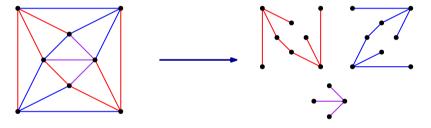
A graph G is (k, d)-decomposable if it can be decomposed into k forests and one subgraph of maximum degree d.



This graph is (2,3)-decomposable

A graph G is $(k, d)^*$ -decomposable if it can be decomposed into k forests and one forest of maximum degree d.

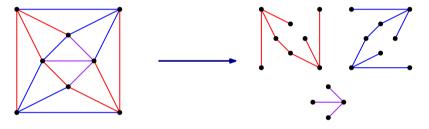
A graph G is $(k, d)^*$ -decomposable if it can be decomposed into k forests and one forest of maximum degree d.



This graph is $(2,3)^*$ -decomposable

A graph G is $[k, d]^*$ -decomposable if it can be decomposed into k forests and one tree of maximum degree d.

A graph G is $[k, d]^*$ -decomposable if it can be decomposed into k forests and one tree of maximum degree d.



This graph is [2,3]*-decomposable

A graph G is (k, d)-decomposable if it can be decomposed into k forests and one subgraph of maximum degree d.

A graph G is $(k, d)^*$ -decomposable if it can be decomposed into k forests and one forest of maximum degree d.

A graph G is $[k, d]^*$ -decomposable if it can be decomposed into k forests and one tree of maximum degree d.

Nine Dragon Tree Theorem:

If for any graph G, there exist positive integers k and d such that:

$$a(G) \leq k + rac{d}{k+d+1},$$

then G is $(k, d)^*$ -decomposable.

Notice that $\lceil a(G) \rceil \leq k + 1$.

Girth of graph G is the length of the shortest cycle in G.

Girth of graph G is the length of the shortest cycle in G.

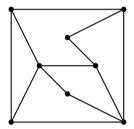
- ▶ Planar graphs with girth at least 8 are $(1,1)^*$ -decomposable
- > Planar graphs with girth at least 7 are $(1,2)^*$ -decomposable
- ▶ Planar graphs with girth at least 5 are (1, 4)-decomposable

Girth of graph G is the length of the shortest cycle in G.

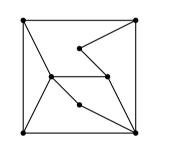
- ▶ Planar graphs with girth at least 8 are $(1,1)^*$ -decomposable
- ▶ Planar graphs with girth at least 7 are $(1,2)^*$ -decomposable
- ▶ Planar graphs with girth at least 5 are (1, 4)-decomposable

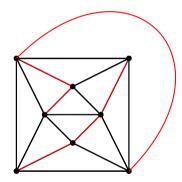
For every planar graph G with girth at least g we have $a(G) \leq \frac{g}{g-2}$

Planar triangulation



Planar triangulation





$$a(G) = \max_{S \subseteq V(G); |S| \ge 2} \frac{|E(S)|}{|S| - 1}$$

$$a(G) = \max_{S \subseteq V(G); |S| \ge 2} \frac{|E(S)|}{|S| - 1}$$

Therefore Nine Dragon Tree Theorem does not give $(2, d)^*$ -decomposability of all planar graphs for any fixed d.

$$a(G) \leq k + rac{d}{k+d+1},$$

$$a(G) = \max_{S \subseteq V(G); |S| \ge 2} \frac{|E(S)|}{|S| - 1}$$

Therefore Nine Dragon Tree Theorem does not give $(2, d)^*$ -decomposability of all planar graphs for any fixed d.

$$a(G) \leq k + rac{d}{k+d+1},$$

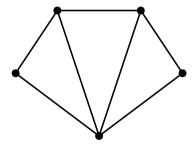
Gonçalves (2009): Every planar graph is (2, 4)*-*decomposable*.

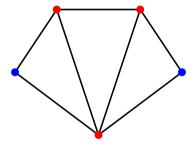
$$a(G) = \max_{S \subseteq V(G); |S| \ge 2} \frac{|E(S)|}{|S|-1}$$

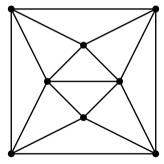
Therefore Nine Dragon Tree Theorem does not give $(2, d)^*$ -decomposability of all planar graphs for any fixed d.

$$a(G) \leq k + rac{d}{k+d+1},$$

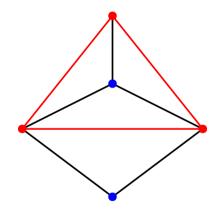
Gonçalves (2009): Every planar graph is $(2, 4)^*$ -decomposable. Some planar graphs are not (2, 3)-decomposable.



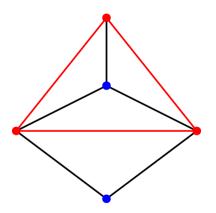




Separating triangle



Separating triangle



Planar triangulation is **4-connected** if and only if it does not have any **separating triangles**.

RESULTS

Theorem 1

Every planar triangulation G decomposes into two trees and a spanning tree of maximum degree 4.

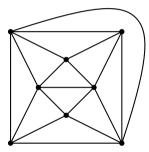
Theorem 1

Every planar triangulation G decomposes into two trees and a spanning tree of maximum degree 4.

In particular, G is $[2, 4]^*$ -decomposable.

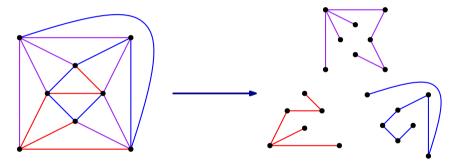
Every planar triangulation G decomposes into two trees and a spanning tree of maximum degree 4.

In particular, G is $[2, 4]^*$ -decomposable.



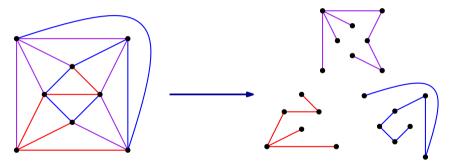
Every planar triangulation G decomposes into two trees and a spanning tree of maximum degree 4.

In particular, G is $[2, 4]^*$ -decomposable.



Every planar triangulation G decomposes into two trees and a spanning tree of maximum degree 4.

In particular, G is $[2, 4]^*$ -decomposable.



Moreover some planar triangulations are not (2,3)-decomposable.

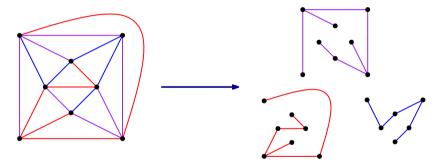
Every Hamiltonian planar triangulation G decomposes into two trees and a spanning tree of maximum degree 3.

Every Hamiltonian planar triangulation G decomposes into two trees and a spanning tree of maximum degree 3.

In particular, G is $[2,3]^*$ -decomposable.

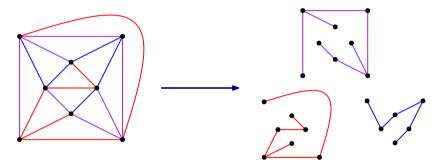
Every Hamiltonian planar triangulation G decomposes into two trees and a spanning tree of maximum degree 3.

In particular, G is $[2,3]^*$ -decomposable.



Every Hamiltonian planar triangulation G decomposes into two trees and a spanning tree of maximum degree 3.

In particular, G is $[2,3]^*$ -decomposable.



Moreover some Hamiltonian planar triangulations are not (2,2)-decomposable.

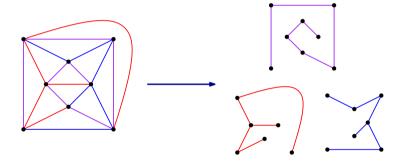
Every 4-connected planar triangulation G decomposes into two trees and one Hamiltionian path.

Every 4-connected planar triangulation G decomposes into two trees and one Hamiltionian path.

In particular, G is $[2, 2]^*$ -decomposable.

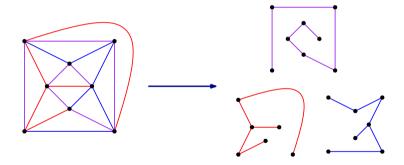
Every 4-connected planar triangulation G decomposes into two trees and one Hamiltionian path.

In particular, G is $[2, 2]^*$ -decomposable.



Every 4-connected planar triangulation G decomposes into two trees and one Hamiltionian path.

In particular, G is $[2, 2]^*$ -decomposable.



Moreover some 4-connected planar triangulations are not (2,1)-decomposable.

Some 4-connected planar triangulations are not (2,1)-decomposable.

Some 4-connected planar triangulations are not (2,1)-decomposable.

Let G be a 4-connected planar triangulation on $n \ge 9$ vertices.

Some 4-connected planar triangulations are not (2,1)-decomposable.

Let G be a 4-connected planar triangulation on $n \ge 9$ vertices. Since G is triangulation it has 3n-6 edges. Some 4-connected planar triangulations are not (2, 1)-decomposable.

Let G be a 4-connected planar triangulation on $n \ge 9$ vertices. Since G is triangulation it has 3n-6 edges.

Every *n*-vertex (2, 1)-*decomposable* graph decomposes into 2 forests and one matching, therefore it has at most 2(n-1) + n/2 edges.

Some 4-connected planar triangulations are not (2, 1)-decomposable.

Let G be a 4-connected planar triangulation on $n \ge 9$ vertices. Since G is triangulation it has 3n-6 edges.

Every *n*-vertex (2,1)-*decomposable* graph decomposes into 2 forests and one matching, therefore it has at most 2(n-1) + n/2 edges.

For $n \ge 9$:

3n-6 > 2(n-1) + n/2,

leading to contradiction

OPEN QUESTIONS

THANKS FOR THE ATTENTION