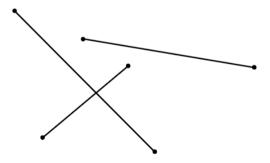
Flip distance to a non-crossing perfect matching

Demian Banakh Department of Theoretical Computer Science Jagiellonian University

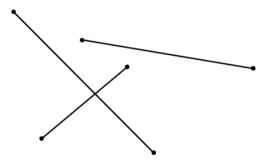
April 27, 2023

• A set *P* of 2*n* points on the plane (assume no 3 collinear points)

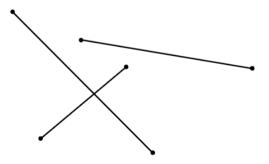
- A set *P* of 2*n* points on the plane (assume no 3 collinear points)
- A perfect straight-line matching M = n segments connecting points in P



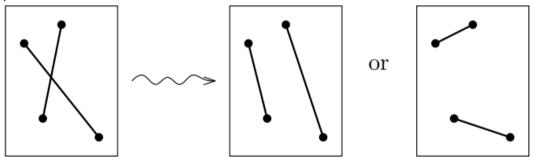
- A set *P* of 2*n* points on the plane (assume no 3 collinear points)
- A perfect straight-line matching M = n segments connecting points in P
- *M* is non-crossing if no 2 segments cross



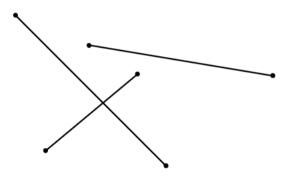
- A set *P* of 2*n* points on the plane (assume no 3 collinear points)
- A perfect straight-line matching M = n segments connecting points in P
- *M* is non-crossing if no 2 segments cross
- Note: P always has a perfect non-crossing matching



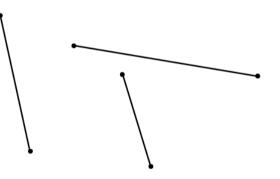
A flip operation replaces 2 crossing segments with 2 non-crossing ones on the same set of points.



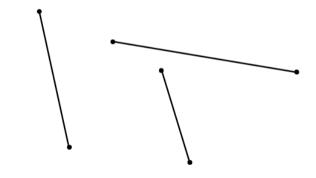
• To prove that any P has a non-crossing matching, we start with any matching M



- To prove that any ${\it P}$ has a non-crossing matching, we start with any matching ${\it M}$
- Perform flip operation while possible



- To prove that any P has a non-crossing matching, we start with any matching M
- Perform flip operation while possible
- Since the total length of the segments decreases, this process has to end at some point



How many flips is necessary / sufficient in this algorithm, for fixed M?

\$\mathcal{M}\$ = (\$M_0\$,...,\$M_k\$) is a valid sequence if a single flip converts \$M_{i-1}\$ into \$M_i\$ for all \$i\$, and \$M_k\$ is non-crossing. Length of such \$\mathcal{M}\$ is \$k\$

- \$\mathcal{M}\$ = (\$M_0\$,...,\$M_k\$) is a valid sequence if a single flip converts \$M_{i-1}\$ into \$M_i\$ for all \$i\$, and \$M_k\$ is non-crossing. Length of such \$\mathcal{M}\$ is \$k\$
- Longest sequence of flips converting a fixed M into some non-crossing matching

 $f(M) = \max\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$

- \$\mathcal{M}\$ = (\$M_0\$,...,\$M_k\$) is a valid sequence if a single flip converts \$M_{i-1}\$ into \$M_i\$ for all \$i\$, and \$M_k\$ is non-crossing. Length of such \$\mathcal{M}\$ is \$k\$
- Longest sequence of flips converting a fixed M into some non-crossing matching

 $f(M) = \max\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$

• Shortest sequence of flips converting a fixed M into some non-crossing matching

 $h(M) = \min\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$

$$f(M) = \max\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$

$$h(M) = \min\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$

$$f(M) = \max\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$

$$h(M) = \min\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$

• Longest sequence of flips over all matchings on 2n points

 $g(n) = \max\{f(M) \mid M \text{ is a matching on } 2n \text{ points}\}$

$$f(M) = \max\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$

$$h(M) = \min\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$

• Longest sequence of flips over all matchings on 2n points

 $g(n) = \max\{f(M) \mid M \text{ is a matching on } 2n \text{ points}\}$

• Longest shortest sequence of flips over all matchings on 2n points

 $k(n) = \max\{h(M) \mid M \text{ is a matching on } 2n \text{ points}\}$

$$f(M) = \max\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$

$$h(M) = \min\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$

• Longest sequence of flips over all matchings on 2n points

 $g(n) = \max\{f(M) \mid M \text{ is a matching on } 2n \text{ points}\}$

• Longest shortest sequence of flips over all matchings on 2n points

 $k(n) = \max\{h(M) \mid M \text{ is a matching on } 2n \text{ points}\}$

• Applications: e.g. improving approximate Euclidean TSP

Main results

 $g(n) = \max\{f(M) \mid M \text{ is a matching on } 2n \text{ points}\}$ $k(n) = \max\{h(M) \mid M \text{ is a matching on } 2n \text{ points}\}$

Main results

 $g(n) = \max\{f(M) \mid M \text{ is a matching on } 2n \text{ points}\}$ $k(n) = \max\{h(M) \mid M \text{ is a matching on } 2n \text{ points}\}$

Theorem (Bonnet and Miltzow; 2016)

$$inom{n}{2} \leq g(\textit{n}) \leq \textit{n}^3$$
 for large enough values of \textit{n}

Main results

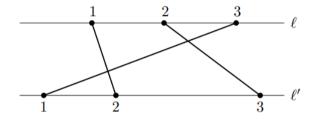
 $g(n) = \max\{f(M) \mid M \text{ is a matching on } 2n \text{ points}\}$ $k(n) = \max\{h(M) \mid M \text{ is a matching on } 2n \text{ points}\}$

Theorem (Bonnet and Miltzow; 2016)

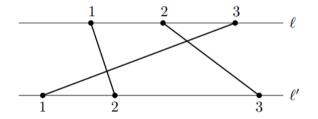
$$inom{n}{2} \leq { extsf{g}}({ extsf{n}}) \leq { extsf{n}}^3$$
 for large enough values of ${ extsf{n}}$

Theorem (Bonnet and Miltzow; 2016)

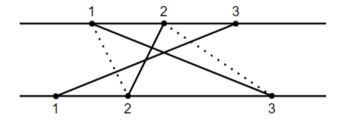
$$n-1 \leq k(n) \leq rac{1}{2}n^2$$
 for large enough values of n



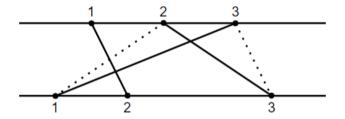
• Such matchings correspond 1-to-1 with permutations of $\{1, \ldots, n\}$



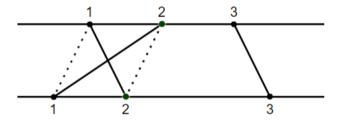
- Such matchings correspond 1-to-1 with permutations of {1,..., n}
- We can do the flips corresponding to single swaps in bubble-sort



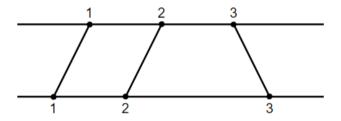
- Such matchings correspond 1-to-1 with permutations of $\{1, \ldots, n\}$
- We can do the flips corresponding to single swaps in bubble-sort
- So number of flips can reach number of inversions in the permutation (at most $\binom{n}{2}$)



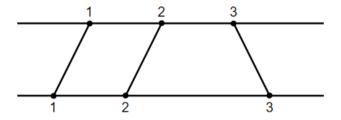
- Such matchings correspond 1-to-1 with permutations of {1,..., n}
- We can do the flips corresponding to single swaps in bubble-sort
- So number of flips can reach number of inversions in the permutation (at most $\binom{n}{2}$)



- Such matchings correspond 1-to-1 with permutations of {1,..., n}
- We can do the flips corresponding to single swaps in bubble-sort
- So number of flips can reach number of inversions in the permutation (at most $\binom{n}{2}$)



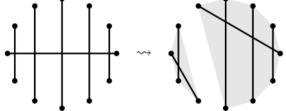
- Such matchings correspond 1-to-1 with permutations of {1,..., n}
- We can do the flips corresponding to single swaps in bubble-sort
- So number of flips can reach number of inversions in the permutation (at most $\binom{n}{2}$)



- Such matchings correspond 1-to-1 with permutations of $\{1, \ldots, n\}$
- We can do the flips corresponding to single swaps in bubble-sort
- So number of flips can reach number of inversions in the permutation (at most $\binom{n}{2}$)
- Add random small offset to points positions to ensure no collinearity

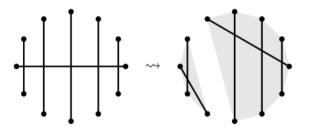
$$k(n) = \max_{M} \min\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$

$$k(n) = \max_{M} \min\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$



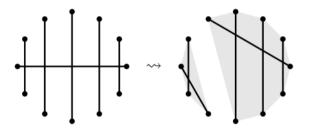
• Denote such matching on n segments as M_n

$$K(n) = \max_{M} \min\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$



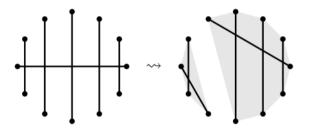
- Denote such matching on n segments as M_n
- Any flip splits problem M_n into 2 disjoint subproblems M_k and M_{n-k}

$$K(n) = \max_{\mathcal{M}} \min\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$



- Denote such matching on *n* segments as M_n
- Any flip splits problem M_n into 2 disjoint subproblems M_k and M_{n-k}
- Let H(n) be min number of flips needed to convert M_n into non-crossing matching

$$K(n) = \max_{\mathcal{M}} \min\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$



- Denote such matching on n segments as M_n
- Any flip splits problem M_n into 2 disjoint subproblems M_k and M_{n-k}
- Let H(n) be min number of flips needed to convert M_n into non-crossing matching
- $[H(n) = 1 + H(k) + H(n-k) \text{ and } H(1) = 0] \implies H(n) = n-1$

 $g(n) = \max\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 \text{ is a matching on } 2n \text{ points}\}$

Idea: Define some non-negative potential function $\Phi(M)$ bounded by function of *n*, so that any flip decreases the potential of the matching.

 $g(n) = \max\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 \text{ is a matching on } 2n \text{ points}\}$

Idea: Define some non-negative potential function $\Phi(M)$ bounded by function of *n*, so that any flip decreases the potential of the matching.

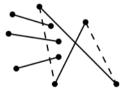


Figure 5: After the depicted flip, the number of crossings goes from 1 to 3.

 $g(n) = \max\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 \text{ is a matching on } 2n \text{ points}\}$

Idea: Define some non-negative potential function $\Phi(M)$ bounded by function of *n*, so that any flip decreases the potential of the matching.

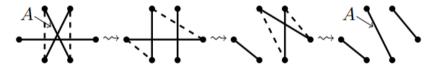
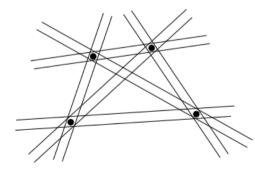


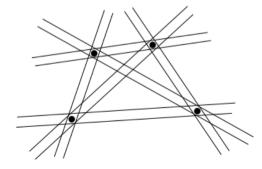
Figure 6: Segment A disappears and reappears.

Upper bound: g(n)

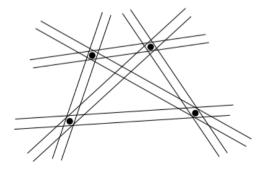
• Set of lines L: $\forall p, q \in P$ add 2 lines slightly above and below line pq



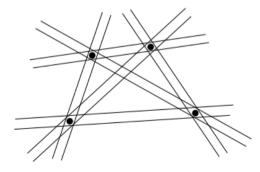
- Set of lines L: $\forall p, q \in P$ add 2 lines slightly above and below line pq
- Define $\Phi(M)$ as number of intersections between these lines and all segments in M



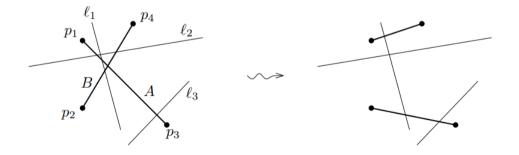
- Set of lines L: $\forall p, q \in P$ add 2 lines slightly above and below line pq
- Define $\Phi(M)$ as number of intersections between these lines and all segments in M
- $\Phi(M) \le n \cdot |L| = n \cdot 2\binom{2n}{2} \le 4n^3$ for any matching M



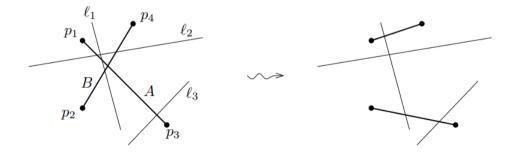
- Set of lines L: $\forall p, q \in P$ add 2 lines slightly above and below line pq
- Define $\Phi(M)$ as number of intersections between these lines and all segments in M
- $\Phi(M) \le n \cdot |L| = n \cdot 2\binom{2n}{2} \le 4n^3$ for any matching M
- Any flip decreases Φ by 4 (next slide), so at most n^3 flips eliminate all crossings



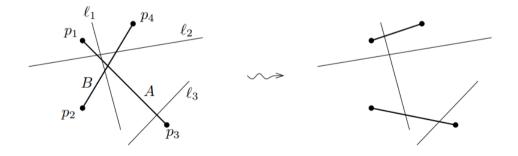
• We only consider lines that intersect segments A or B



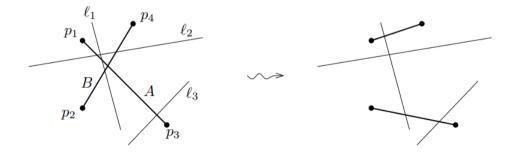
- We only consider lines that intersect segments A or B
- Such line either separates one point from other 3, or separates 2 points from other 2



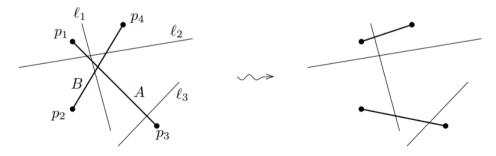
- We only consider lines that intersect segments A or B
- Such line either separates one point from other 3, or separates 2 points from other 2
- # intersections with lines of type 1 doesn't change



- We only consider lines that intersect segments A or B
- Such line either separates one point from other 3, or separates 2 points from other 2
- # intersections with lines of type 1 doesn't change
- # intersections with line of type 2 decreases by 2 or 0 (depending on the flip)



- We only consider lines that intersect segments A or B
- Such line either separates one point from other 3, or separates 2 points from other 2
- # intersections with lines of type 1 doesn't change
- # intersections with line of type 2 decreases by 2 or 0 (depending on the flip)
- L always contains at least 2 lines decreasing Φ by 2, for any crossing



$$k(n) = \max_{M} \min\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$

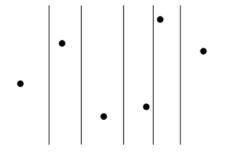
$$k(n) = \max_{M} \min\{k \mid \exists \mathcal{M} \text{ of length } k \text{ with } M_0 = M\}$$

Claim:

For any matching M on 2n points exists a valid flip sequence of length \leq *something*

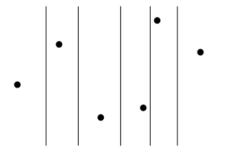
For any matching M on 2n points exists a valid flip sequence of length \leq *something*

• Set of lines L: Separate consecutive points by parallel lines



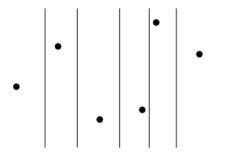
For any matching M on 2n points exists a valid flip sequence of length \leq *something*

- Set of lines L: Separate consecutive points by parallel lines
- Define $\Phi(M)$ as before; $\Phi(M) \le n \cdot |L| \le n^2$ for any matching M

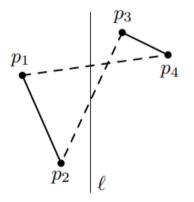


For any matching M on 2n points exists a valid flip sequence of length \leq *something*

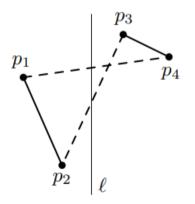
- Set of lines L: Separate consecutive points by parallel lines
- Define $\Phi(M)$ as before; $\Phi(M) \le n \cdot |L| \le n^2$ for any matching M
- Some flip decreases Φ by 2 (next slide), so at most $\frac{1}{2}n^2$ flips eliminate all crossings



• Consider a crossing on points p_1, p_2, p_3, p_4 (in this order)



- Consider a crossing on points p_1, p_2, p_3, p_4 (in this order)
- There is at least one line separating p_2 and p_3 , which loses 2 intersections after a flip



$$inom{n}{2} \leq g(n) \leq n^3$$
 for large enough values of n

$$inom{n}{2} \leq { extsf{g}}({ extsf{n}}) \leq { extsf{n}}^3$$
 for large enough values of ${ extsf{n}}$

Conjecture

$$g(n) = \Theta(n^2)$$

$$inom{n}{2} \leq { extbf{g}}({ extbf{n}}) \leq { extbf{n}}^3$$
 for large enough values of ${ extbf{n}}$

Conjecture

 $g(n) = \Theta(n^2)$

• Easy to prove assuming all points P are in convex position

$$inom{n}{2} \leq g(n) \leq n^3$$
 for large enough values of n

Conjecture

 $g(n) = \Theta(n^2)$

- Easy to prove assuming all points P are in convex position
- Possible to show that $(1 \varepsilon)n^2 \le g(n)$ for large enough n

Definition

 $2 \mbox{ flips are } distinct \mbox{ if the sets of 4 segments involved in the flips are different.}$

g'(n) = longest sequence of distinct flips over all matchings on 2n points

Definition

2 flips are *distinct* if the sets of 4 segments involved in the flips are different.

g'(n) = longest sequence of distinct flips over all matchings on 2n points

Obviously $g'(n) \leq g(n) = O(n^3)$.

Distinct flips

Definition

2 flips are *distinct* if the sets of 4 segments involved in the flips are different.

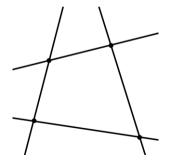
g'(n) = longest sequence of distinct flips over all matchings on 2n points

Obviously $g'(n) \leq g(n) = O(n^3)$.

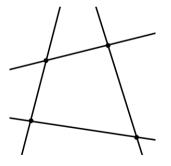
Theorem

 $g'(n)=O(n^{\frac{8}{3}})$

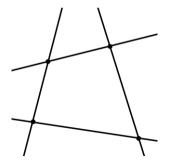
- Consider a similar potential function as before
- Set of lines L: $\forall p, q \in P$ add line pq



- Consider a similar potential function as before
- Set of lines L: $\forall p, q \in P$ add line pq
- Define $\Phi(M)$ as number of intersections between these lines and all segments in M



- Consider a similar potential function as before
- Set of lines L: $\forall p, q \in P$ add line pq
- Define $\Phi(M)$ as number of intersections between these lines and all segments in M
- $\Phi(M) \le n \cdot |L| = n \cdot \binom{2n}{2} \le 2n^3$ for any matching M



Lemma

For any k, number of flips in any sequence with $|\Delta \Phi| \ge k$ is $O(\frac{n^3}{k})$. **Proof.** $\Phi(M) = O(n^3)$.

Lemma

For any k, number of flips in any sequence with $|\Delta \Phi| \ge k$ is $O(\frac{n^3}{k})$. **Proof.** $\Phi(M) = O(n^3)$.

Lemma

For any k, number of distinct flips with $|\Delta \Phi| < k$ is $O(n^2k^2)$. **Proof.** Next slide.

Lemma

For any k, number of flips in any sequence with $|\Delta \Phi| \ge k$ is $O(\frac{n^3}{k})$. **Proof.** $\Phi(M) = O(n^3)$.

Lemma

For any k, number of distinct flips with $|\Delta \Phi| < k$ is $O(n^2k^2)$. **Proof.** Next slide.

When $k = n^{\frac{1}{3}}$, we get that the total number of distinct flips in any sequence is

$$O(\frac{n^3}{n^{\frac{1}{3}}}) + O(n^2 \cdot n^{\frac{2}{3}}) = O(n^{\frac{8}{3}})$$

Lemma

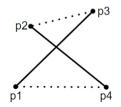
Lemma

For any k, number of distinct flips with $|\Delta \Phi| < k$ is $O(n^2 k^2)$.

• Fix any $p_1, p_4 \in P$

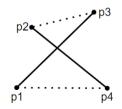
Lemma

- Fix any $p_1, p_4 \in P$
- We show that there are at most $4k^2$ different flips $p_1p_3, p_2p_4 \rightarrow p_1p_4, p_2p_3$



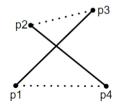
Lemma

- Fix any $p_1, p_4 \in P$
- We show that there are at most $4k^2$ different flips $p_1p_3, p_2p_4 \rightarrow p_1p_4, p_2p_3$
- Goal: at most 2k possible choices of p_3



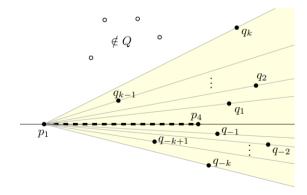
Lemma

- Fix any $p_1, p_4 \in P$
- We show that there are at most $4k^2$ different flips $p_1p_3, p_2p_4 \rightarrow p_1p_4, p_2p_3$
- Goal: at most 2k possible choices of p_3
- p_1p_4 can be chosen in $O(n^2)$ ways, so in total $O(n^2k^2)$ flips in any sequence

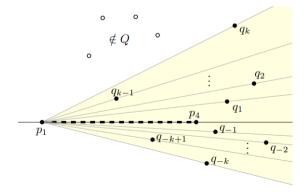


• Goal: at most 2k possible choices of p_3

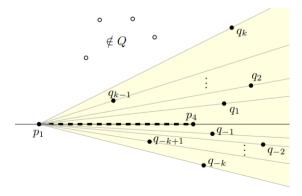
- Goal: at most 2k possible choices of p_3
- Sweep all points by angle from p_1p_4



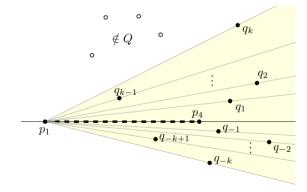
- Goal: at most 2k possible choices of p_3
- Sweep all points by angle from p_1p_4
- Let Q be k closest points to the left and k closest points to the right (2k total)



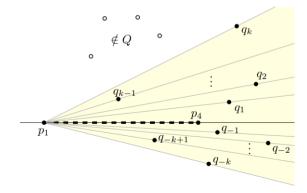
- Goal: at most 2k possible choices of p_3
- Sweep all points by angle from p_1p_4
- Let Q be k closest points to the left and k closest points to the right (2k total)
- Claim: $p_3 \in Q$



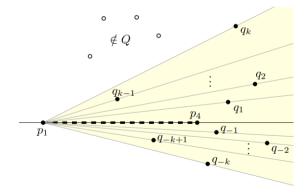
• Claim: $p_3 \in Q$



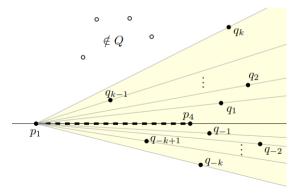
- Claim: $p_3 \in Q$
- Assume $p_3 \notin Q$, WLOG above p_1p_4



- Claim: $p_3 \in Q$
- Assume $p_3 \notin Q$, WLOG above p_1p_4
- p_2p_4 intersected p_1p_3 before the flip $\implies p_2p_4$ intersected lines p_1q_i for $1 \le i \le k$



- Claim: $p_3 \in Q$
- Assume $p_3 \notin Q$, WLOG above $p_1 p_4$
- p_2p_4 intersected p_1p_3 before the flip $\implies p_2p_4$ intersected lines p_1q_i for $1 \le i \le k$
- It means $|\Delta \Phi| \ge k$ contradiction



Definition

2 flips are *distinct* if the sets of 4 segments involved in the flips are different. g'(n) =longest sequence of distinct flips over all matchings on 2n points

Theorem $g'(n) = O(n^{\frac{8}{3}})$

• Repeated flips in a sequence appear to be pretty rare

Definition

2 flips are *distinct* if the sets of 4 segments involved in the flips are different. g'(n) =longest sequence of distinct flips over all matchings on 2n points

Theorem

 $g'(n)=O(n^{\frac{8}{3}})$

- Repeated flips in a sequence appear to be pretty rare
- So it's believed that g(n) should be O(g'(n))

References

Edouard Bonnet and Tillmann Miltzow (2016) Flip Distance to a Non-crossing Perfect Matching arXiv

 Guilherme D. da Fonseca, Yan Gerard and Bastien Rivier (2023)
On the Longest Flip Sequence to Untangle Segments in the Plane arXiv

The End