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Non-crossing perfect matching

• A set P of 2n points on the plane (assume no 3 collinear points)

• A perfect straight-line matching M = n segments connecting points in P

• M is non-crossing if no 2 segments cross

• Note: P always has a perfect non-crossing matching
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Flip operation

A flip operation replaces 2 crossing segments with 2 non-crossing ones on the same set of
points.
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Flip operation
• To prove that any P has a non-crossing matching, we start with any matching M

• Perform flip operation while possible
• Since the total length of the segments decreases, this process has to end at some
point

How many flips is necessary / sufficient in this algorithm, for fixed M?
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Flip distance

• M = (M0, . . . ,Mk) is a valid sequence if a single flip converts Mi−1 into Mi for all i ,
and Mk is non-crossing. Length of such M is k

• Longest sequence of flips converting a fixed M into some non-crossing matching

f (M) = max{k | ∃M of length k with M0 = M}

• Shortest sequence of flips converting a fixed M into some non-crossing matching

h(M) = min{k | ∃M of length k with M0 = M}
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Flip distance

f (M) = max{k | ∃M of length k with M0 = M}
h(M) = min{k | ∃M of length k with M0 = M}

• Longest sequence of flips over all matchings on 2n points

g(n) = max{f (M) | M is a matching on 2n points}

• Longest shortest sequence of flips over all matchings on 2n points

k(n) = max{h(M) | M is a matching on 2n points}

• Applications: e.g. improving approximate Euclidean TSP
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Main results

g(n) = max{f (M) | M is a matching on 2n points}
k(n) = max{h(M) | M is a matching on 2n points}

Theorem (Bonnet and Miltzow; 2016)(
n

2

)
≤ g(n) ≤ n3 for large enough values of n

Theorem (Bonnet and Miltzow; 2016)

n − 1 ≤ k(n) ≤ 1

2
n2 for large enough values of n
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Lower bound: g(n)

g(n) = max{k | ∃M of length k with M0 is a matching on 2n points}

• Such matchings correspond 1-to-1 with permutations of {1, . . . , n}
• We can do the flips corresponding to single swaps in bubble-sort

• So number of flips can reach number of inversions in the permutation (at most
(n
2

)
)

• Add random small offset to points positions to ensure no collinearity
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Lower bound: k(n)

k(n) = max
M

min{k | ∃M of length k with M0 = M}

• Denote such matching on n segments as Mn

• Any flip splits problem Mn into 2 disjoint subproblems Mk and Mn−k

• Let H(n) be min number of flips needed to convert Mn into non-crossing matching

• [H(n) = 1 + H(k) + H(n − k) and H(1) = 0] =⇒ H(n) = n − 1
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Upper bound: g(n)

g(n) = max{k | ∃M of length k with M0 is a matching on 2n points}

Idea: Define some non-negative potential function Φ(M) bounded by function of n, so
that any flip decreases the potential of the matching.
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Upper bound: g(n)

• Set of lines L: ∀p, q ∈ P add 2 lines slightly above and below line pq

• Define Φ(M) as number of intersections between these lines and all segments in M

• Φ(M) ≤ n · |L| = n · 2
(2n
2

)
≤ 4n3 for any matching M

• Any flip decreases Φ by 4 (next slide), so at most n3 flips eliminate all crossings

11 / 22



Upper bound: g(n)

• Set of lines L: ∀p, q ∈ P add 2 lines slightly above and below line pq

• Define Φ(M) as number of intersections between these lines and all segments in M

• Φ(M) ≤ n · |L| = n · 2
(2n
2

)
≤ 4n3 for any matching M

• Any flip decreases Φ by 4 (next slide), so at most n3 flips eliminate all crossings

11 / 22



Upper bound: g(n)

• Set of lines L: ∀p, q ∈ P add 2 lines slightly above and below line pq

• Define Φ(M) as number of intersections between these lines and all segments in M

• Φ(M) ≤ n · |L| = n · 2
(2n
2

)
≤ 4n3 for any matching M

• Any flip decreases Φ by 4 (next slide), so at most n3 flips eliminate all crossings

11 / 22



Upper bound: g(n)

• Set of lines L: ∀p, q ∈ P add 2 lines slightly above and below line pq

• Define Φ(M) as number of intersections between these lines and all segments in M

• Φ(M) ≤ n · |L| = n · 2
(2n
2

)
≤ 4n3 for any matching M

• Any flip decreases Φ by 4 (next slide), so at most n3 flips eliminate all crossings

11 / 22



Upper bound: g(n)

• We only consider lines that intersect segments A or B

• Such line either separates one point from other 3, or separates 2 points from other 2

• # intersections with lines of type 1 doesn’t change

• # intersections with line of type 2 decreases by 2 or 0 (depending on the flip)

• L always contains at least 2 lines decreasing Φ by 2, for any crossing
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Upper bound: k(n)

k(n) = max
M

min{k | ∃M of length k with M0 = M}

• Set of lines L: Separate consecutive points by parallel lines
• Define Φ(M) as before; Φ(M) ≤ n · |L| ≤ n2 for any matching M
• Some flip decreases Φ by 2 (next slide), so at most 1

2n
2 flips eliminate all crossings
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Upper bound: k(n)

k(n) = max
M

min{k | ∃M of length k with M0 = M}

Claim:

For any matching M on 2n points exists a valid flip sequence of length ≤ *something*

• Set of lines L: Separate consecutive points by parallel lines
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Upper bound: k(n)

• Consider a crossing on points p1, p2, p3, p4 (in this order)

• There is at least one line separating p2 and p3, which loses 2 intersections after a flip
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Conjecture

Theorem (Bonnet and Miltzow; 2016)(
n

2

)
≤ g(n) ≤ n3 for large enough values of n

Conjecture

g(n) = Θ(n2)

• Easy to prove assuming all points P are in convex position

• Possible to show that (1− ε)n2 ≤ g(n) for large enough n
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Distinct flips

Definition

2 flips are distinct if the sets of 4 segments involved in the flips are different.

g ′(n) = longest sequence of distinct flips over all matchings on 2n points

Obviously g ′(n) ≤ g(n) = O(n3).

Theorem

g ′(n) = O(n
8
3 )
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Upper bound: g ′(n)

• Consider a similar potential function as before

• Set of lines L: ∀p, q ∈ P add line pq

• Define Φ(M) as number of intersections between these lines and all segments in M

• Φ(M) ≤ n · |L| = n ·
(2n
2

)
≤ 2n3 for any matching M
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Upper bound: g ′(n)

Lemma

For any k , number of flips in any sequence with |∆Φ| ≥ k is O(n
3

k ).

Proof. Φ(M) = O(n3).

Lemma

For any k , number of distinct flips with |∆Φ| < k is O(n2k2).

Proof. Next slide.

When k = n
1
3 , we get that the total number of distinct flips in any sequence is

O(
n3

n
1
3

) + O(n2 · n
2
3 ) = O(n

8
3 )
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Upper bound: g ′(n)

Lemma

For any k , number of distinct flips with |∆Φ| < k is O(n2k2).

• Fix any p1, p4 ∈ P

• We show that there are at most 4k2 different flips p1p3, p2p4 → p1p4, p2p3
• Goal: at most 2k possible choices of p3
• p1p4 can be chosen in O(n2) ways, so in total O(n2k2) flips in any sequence
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Upper bound: g ′(n)
• Goal: at most 2k possible choices of p3

• Sweep all points by angle from p1p4
• Let Q be k closest points to the left and k closest points to the right (2k total)
• Claim: p3 ∈ Q
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Distinct flips: conclusion

Definition

2 flips are distinct if the sets of 4 segments involved in the flips are different.

g ′(n) = longest sequence of distinct flips over all matchings on 2n points

Theorem

g ′(n) = O(n
8
3 )

• Repeated flips in a sequence appear to be pretty rare

• So it’s believed that g(n) should be O(g ′(n))
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