Flip distance to a non-crossing perfect matching

Demian Banakh
Department of Theoretical Computer Science
Jagiellonian University

April 27, 2023

Non-crossing perfect matching

- A set P of $2 n$ points on the plane (assume no 3 collinear points)

Non-crossing perfect matching

- A set P of $2 n$ points on the plane (assume no 3 collinear points)
- A perfect straight-line matching $M=n$ segments connecting points in P

Non-crossing perfect matching

- A set P of $2 n$ points on the plane (assume no 3 collinear points)
- A perfect straight-line matching $M=n$ segments connecting points in P
- M is non-crossing if no 2 segments cross

Non-crossing perfect matching

- A set P of $2 n$ points on the plane (assume no 3 collinear points)
- A perfect straight-line matching $M=n$ segments connecting points in P
- M is non-crossing if no 2 segments cross
- Note: P always has a perfect non-crossing matching

Flip operation

A flip operation replaces 2 crossing segments with 2 non-crossing ones on the same set of points.

Flip operation

- To prove that any P has a non-crossing matching, we start with any matching M

Flip operation

- To prove that any P has a non-crossing matching, we start with any matching M
- Perform flip operation while possible

Flip operation

- To prove that any P has a non-crossing matching, we start with any matching M
- Perform flip operation while possible
- Since the total length of the segments decreases, this process has to end at some point

How many flips is necessary / sufficient in this algorithm, for fixed M ?

Flip distance

- $\mathcal{M}=\left(M_{0}, \ldots, M_{k}\right)$ is a valid sequence if a single flip converts M_{i-1} into M_{i} for all i, and M_{k} is non-crossing. Length of such \mathcal{M} is k

Flip distance

- $\mathcal{M}=\left(M_{0}, \ldots, M_{k}\right)$ is a valid sequence if a single flip converts M_{i-1} into M_{i} for all i, and M_{k} is non-crossing. Length of such \mathcal{M} is k
- Longest sequence of flips converting a fixed M into some non-crossing matching

$$
f(M)=\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\}
$$

Flip distance

- $\mathcal{M}=\left(M_{0}, \ldots, M_{k}\right)$ is a valid sequence if a single flip converts M_{i-1} into M_{i} for all i, and M_{k} is non-crossing. Length of such \mathcal{M} is k
- Longest sequence of flips converting a fixed M into some non-crossing matching

$$
f(M)=\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\}
$$

- Shortest sequence of flips converting a fixed M into some non-crossing matching

$$
h(M)=\min \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\}
$$

Flip distance

$$
\begin{aligned}
f(M) & =\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\} \\
h(M) & =\min \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\}
\end{aligned}
$$

Flip distance

$$
\begin{aligned}
f(M) & =\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\} \\
h(M) & =\min \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\}
\end{aligned}
$$

- Longest sequence of flips over all matchings on $2 n$ points

$$
g(n)=\max \{f(M) \mid M \text { is a matching on } 2 n \text { points }\}
$$

Flip distance

$$
\begin{aligned}
f(M) & =\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\} \\
h(M) & =\min \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\}
\end{aligned}
$$

- Longest sequence of flips over all matchings on $2 n$ points

$$
g(n)=\max \{f(M) \mid M \text { is a matching on } 2 n \text { points }\}
$$

- Longest shortest sequence of flips over all matchings on $2 n$ points

$$
k(n)=\max \{h(M) \mid M \text { is a matching on } 2 n \text { points }\}
$$

Flip distance

$$
\begin{aligned}
f(M) & =\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\} \\
h(M) & =\min \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\}
\end{aligned}
$$

- Longest sequence of flips over all matchings on $2 n$ points

$$
g(n)=\max \{f(M) \mid M \text { is a matching on } 2 n \text { points }\}
$$

- Longest shortest sequence of flips over all matchings on $2 n$ points

$$
k(n)=\max \{h(M) \mid M \text { is a matching on } 2 n \text { points }\}
$$

- Applications: e.g. improving approximate Euclidean TSP

Main results

$$
\begin{aligned}
g(n) & =\max \{f(M) \mid M \text { is a matching on } 2 n \text { points }\} \\
k(n) & =\max \{h(M) \mid M \text { is a matching on } 2 n \text { points }\}
\end{aligned}
$$

Main results

$$
\begin{aligned}
& g(n)=\max \{f(M) \mid M \text { is a matching on } 2 n \text { points }\} \\
& k(n)=\max \{h(M) \mid M \text { is a matching on } 2 n \text { points }\}
\end{aligned}
$$

Theorem (Bonnet and Miltzow; 2016)

$$
\binom{n}{2} \leq g(n) \leq n^{3} \text { for large enough values of } n
$$

Main results

$$
\begin{aligned}
& g(n)=\max \{f(M) \mid M \text { is a matching on } 2 n \text { points }\} \\
& k(n)=\max \{h(M) \mid M \text { is a matching on } 2 n \text { points }\}
\end{aligned}
$$

Theorem (Bonnet and Miltzow; 2016)

$$
\binom{n}{2} \leq g(n) \leq n^{3} \text { for large enough values of } n
$$

Theorem (Bonnet and Miltzow; 2016)

$$
n-1 \leq k(n) \leq \frac{1}{2} n^{2} \text { for large enough values of } n
$$

Lower bound: $g(n)$

$g(n)=\max \left\{k \mid \exists \mathcal{M}\right.$ of length k with M_{0} is a matching on $2 n$ points $\}$

Lower bound: $g(n)$

$$
g(n)=\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0} \text { is a matching on } 2 n \text { points }\right\}
$$

- Such matchings correspond 1 -to- 1 with permutations of $\{1, \ldots, n\}$

Lower bound: $g(n)$

$$
g(n)=\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0} \text { is a matching on } 2 n \text { points }\right\}
$$

- Such matchings correspond 1 -to- 1 with permutations of $\{1, \ldots, n\}$
- We can do the flips corresponding to single swaps in bubble-sort

Lower bound: $g(n)$

$$
g(n)=\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0} \text { is a matching on } 2 n \text { points }\right\}
$$

- Such matchings correspond 1 -to- 1 with permutations of $\{1, \ldots, n\}$
- We can do the flips corresponding to single swaps in bubble-sort
- So number of flips can reach number of inversions in the permutation (at most $\binom{n}{2}$)

Lower bound: $g(n)$

$$
g(n)=\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0} \text { is a matching on } 2 n \text { points }\right\}
$$

- Such matchings correspond 1 -to- 1 with permutations of $\{1, \ldots, n\}$
- We can do the flips corresponding to single swaps in bubble-sort
- So number of flips can reach number of inversions in the permutation (at most $\binom{n}{2}$)

Lower bound: $g(n)$

$$
g(n)=\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0} \text { is a matching on } 2 n \text { points }\right\}
$$

- Such matchings correspond 1 -to-1 with permutations of $\{1, \ldots, n\}$
- We can do the flips corresponding to single swaps in bubble-sort
- So number of flips can reach number of inversions in the permutation (at most $\binom{n}{2}$)

Lower bound: $g(n)$

$$
g(n)=\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0} \text { is a matching on } 2 n \text { points }\right\}
$$

- Such matchings correspond 1 -to- 1 with permutations of $\{1, \ldots, n\}$
- We can do the flips corresponding to single swaps in bubble-sort
- So number of flips can reach number of inversions in the permutation (at most $\binom{n}{2}$)

Lower bound: $g(n)$

$$
g(n)=\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0} \text { is a matching on } 2 n \text { points }\right\}
$$

- Such matchings correspond 1 -to- 1 with permutations of $\{1, \ldots, n\}$
- We can do the flips corresponding to single swaps in bubble-sort
- So number of flips can reach number of inversions in the permutation (at most $\binom{n}{2}$)
- Add random small offset to points positions to ensure no collinearity

Lower bound: $k(n)$

$$
k(n)=\max _{M} \min \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\}
$$

Lower bound: $k(n)$

- Denote such matching on n segments as M_{n}

Lower bound: $k(n)$

$$
\|\|-\|\|
$$

- Denote such matching on n segments as M_{n}
- Any flip splits problem M_{n} into 2 disjoint subproblems M_{k} and M_{n-k}

Lower bound: $k(n)$

$$
\|\|-\|\|
$$

- Denote such matching on n segments as M_{n}
- Any flip splits problem M_{n} into 2 disjoint subproblems M_{k} and M_{n-k}
- Let $H(n)$ be min number of flips needed to convert M_{n} into non-crossing matching

Lower bound: $k(n)$

$$
k(n)=\max _{M} \min \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\}
$$

- Denote such matching on n segments as M_{n}
- Any flip splits problem M_{n} into 2 disjoint subproblems M_{k} and M_{n-k}
- Let $H(n)$ be min number of flips needed to convert M_{n} into non-crossing matching
- $[H(n)=1+H(k)+H(n-k)$ and $H(1)=0] \Longrightarrow H(n)=n-1$

Upper bound: $g(n)$

$$
g(n)=\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0} \text { is a matching on } 2 n \text { points }\right\}
$$

Idea: Define some non-negative potential function $\Phi(M)$ bounded by function of n, so that any flip decreases the potential of the matching.

Upper bound: $g(n)$

$$
g(n)=\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0} \text { is a matching on } 2 n \text { points }\right\}
$$

Idea: Define some non-negative potential function $\Phi(M)$ bounded by function of n, so that any flip decreases the potential of the matching.

Figure 5: After the depicted flip, the number of crossings goes from 1 to 3 .

Upper bound: $g(n)$

$$
g(n)=\max \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0} \text { is a matching on } 2 n \text { points }\right\}
$$

Idea: Define some non-negative potential function $\Phi(M)$ bounded by function of n, so that any flip decreases the potential of the matching.

Figure 6: Segment A disappears and reappears.

Upper bound: $g(n)$

- Set of lines $L: \forall p, q \in P$ add 2 lines slightly above and below line $p q$

Upper bound: $g(n)$

- Set of lines $L: \forall p, q \in P$ add 2 lines slightly above and below line $p q$
- Define $\Phi(M)$ as number of intersections between these lines and all segments in M

Upper bound: $g(n)$

- Set of lines $L: \forall p, q \in P$ add 2 lines slightly above and below line $p q$
- Define $\Phi(M)$ as number of intersections between these lines and all segments in M
- $\Phi(M) \leq n \cdot|L|=n \cdot 2\binom{2 n}{2} \leq 4 n^{3}$ for any matching M

Upper bound: $g(n)$

- Set of lines $L: \forall p, q \in P$ add 2 lines slightly above and below line $p q$
- Define $\Phi(M)$ as number of intersections between these lines and all segments in M
- $\Phi(M) \leq n \cdot|L|=n \cdot 2\binom{2 n}{2} \leq 4 n^{3}$ for any matching M
- Any flip decreases Φ by 4 (next slide), so at most n^{3} flips eliminate all crossings

Upper bound: $g(n)$

- We only consider lines that intersect segments A or B

Upper bound: $g(n)$

- We only consider lines that intersect segments A or B
- Such line either separates one point from other 3 , or separates 2 points from other 2

Upper bound: $g(n)$

- We only consider lines that intersect segments A or B
- Such line either separates one point from other 3 , or separates 2 points from other 2
- \# intersections with lines of type 1 doesn't change

Upper bound: $g(n)$

- We only consider lines that intersect segments A or B
- Such line either separates one point from other 3 , or separates 2 points from other 2
- \# intersections with lines of type 1 doesn't change
- \# intersections with line of type 2 decreases by 2 or 0 (depending on the flip)

Upper bound: $g(n)$

- We only consider lines that intersect segments A or B
- Such line either separates one point from other 3 , or separates 2 points from other 2
- \# intersections with lines of type 1 doesn't change
- \# intersections with line of type 2 decreases by 2 or 0 (depending on the flip)
- L always contains at least 2 lines decreasing Φ by 2 , for any crossing

Upper bound: $k(n)$

$$
k(n)=\max _{M} \min \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\}
$$

Upper bound: $k(n)$

$$
k(n)=\max _{M} \min \left\{k \mid \exists \mathcal{M} \text { of length } k \text { with } M_{0}=M\right\}
$$

Claim:
For any matching M on $2 n$ points exists a valid flip sequence of length \leq *something*

Upper bound: $k(n)$

For any matching M on $2 n$ points exists a valid flip sequence of length $\leq{ }^{*}$ something*

- Set of lines L : Separate consecutive points by parallel lines

Upper bound: $k(n)$

For any matching M on $2 n$ points exists a valid flip sequence of length $\leq{ }^{*}$ something*

- Set of lines L : Separate consecutive points by parallel lines
- Define $\Phi(M)$ as before; $\Phi(M) \leq n \cdot|L| \leq n^{2}$ for any matching M

Upper bound: $k(n)$

For any matching M on $2 n$ points exists a valid flip sequence of length \leq *something*

- Set of lines L : Separate consecutive points by parallel lines
- Define $\Phi(M)$ as before; $\Phi(M) \leq n \cdot|L| \leq n^{2}$ for any matching M
- Some flip decreases Φ by 2 (next slide), so at most $\frac{1}{2} n^{2}$ flips eliminate all crossings

Upper bound: $k(n)$

- Consider a crossing on points $p_{1}, p_{2}, p_{3}, p_{4}$ (in this order)

Upper bound: $k(n)$

- Consider a crossing on points $p_{1}, p_{2}, p_{3}, p_{4}$ (in this order)
- There is at least one line separating p_{2} and p_{3}, which loses 2 intersections after a flip

Conjecture

Theorem (Bonnet and Miltzow; 2016)

$$
\binom{n}{2} \leq g(n) \leq n^{3} \text { for large enough values of } n
$$

Conjecture

Theorem (Bonnet and Miltzow; 2016)

$$
\binom{n}{2} \leq g(n) \leq n^{3} \text { for large enough values of } n
$$

Conjecture

$g(n)=\Theta\left(n^{2}\right)$

Conjecture

Theorem (Bonnet and Miltzow; 2016)

$$
\binom{n}{2} \leq g(n) \leq n^{3} \text { for large enough values of } n
$$

Conjecture

$g(n)=\Theta\left(n^{2}\right)$

- Easy to prove assuming all points P are in convex position

Conjecture

Theorem (Bonnet and Miltzow; 2016)

$$
\binom{n}{2} \leq g(n) \leq n^{3} \text { for large enough values of } n
$$

Conjecture

$g(n)=\Theta\left(n^{2}\right)$

- Easy to prove assuming all points P are in convex position
- Possible to show that $(1-\varepsilon) n^{2} \leq g(n)$ for large enough n

Distinct flips

Definition

2 flips are distinct if the sets of 4 segments involved in the flips are different. $g^{\prime}(n)=$ longest sequence of distinct flips over all matchings on $2 n$ points

Distinct flips

Definition

2 flips are distinct if the sets of 4 segments involved in the flips are different. $g^{\prime}(n)=$ longest sequence of distinct flips over all matchings on $2 n$ points Obviously $g^{\prime}(n) \leq g(n)=O\left(n^{3}\right)$.

Distinct flips

Definition

2 flips are distinct if the sets of 4 segments involved in the flips are different. $g^{\prime}(n)=$ longest sequence of distinct flips over all matchings on $2 n$ points Obviously $g^{\prime}(n) \leq g(n)=O\left(n^{3}\right)$.

Theorem

$g^{\prime}(n)=O\left(n^{\frac{8}{3}}\right)$

Upper bound: $g^{\prime}(n)$

- Consider a similar potential function as before
- Set of lines $L: \forall p, q \in P$ add line $p q$

Upper bound: $g^{\prime}(n)$

- Consider a similar potential function as before
- Set of lines $L: \forall p, q \in P$ add line $p q$
- Define $\Phi(M)$ as number of intersections between these lines and all segments in M

Upper bound: $g^{\prime}(n)$

- Consider a similar potential function as before
- Set of lines $L: \forall p, q \in P$ add line $p q$
- Define $\Phi(M)$ as number of intersections between these lines and all segments in M
- $\Phi(M) \leq n \cdot|L|=n \cdot\binom{2 n}{2} \leq 2 n^{3}$ for any matching M

Upper bound: $g^{\prime}(n)$

Lemma

For any k, number of flips in any sequence with $|\Delta \Phi| \geq k$ is $O\left(\frac{n^{3}}{k}\right)$.
Proof. $\Phi(M)=O\left(n^{3}\right)$.

Upper bound: $g^{\prime}(n)$

Lemma

For any k, number of flips in any sequence with $|\Delta \Phi| \geq k$ is $O\left(\frac{n^{3}}{k}\right)$.
Proof. $\Phi(M)=O\left(n^{3}\right)$.

Lemma

For any k, number of distinct flips with $|\Delta \Phi|<k$ is $O\left(n^{2} k^{2}\right)$.
Proof. Next slide.

Upper bound: $g^{\prime}(n)$

Lemma

For any k, number of flips in any sequence with $|\Delta \Phi| \geq k$ is $O\left(\frac{n^{3}}{k}\right)$.
Proof. $\Phi(M)=O\left(n^{3}\right)$.

Lemma

For any k, number of distinct flips with $|\Delta \Phi|<k$ is $O\left(n^{2} k^{2}\right)$.
Proof. Next slide.
When $k=n^{\frac{1}{3}}$, we get that the total number of distinct flips in any sequence is

$$
O\left(\frac{n^{3}}{n^{\frac{1}{3}}}\right)+O\left(n^{2} \cdot n^{\frac{2}{3}}\right)=O\left(n^{\frac{8}{3}}\right)
$$

Upper bound: $g^{\prime}(n)$

Lemma

For any k, number of distinct flips with $|\Delta \Phi|<k$ is $O\left(n^{2} k^{2}\right)$.

Upper bound: $g^{\prime}(n)$

Lemma

For any k, number of distinct flips with $|\Delta \Phi|<k$ is $O\left(n^{2} k^{2}\right)$.

- Fix any $p_{1}, p_{4} \in P$

Upper bound: $g^{\prime}(n)$

Lemma

For any k, number of distinct flips with $|\Delta \Phi|<k$ is $O\left(n^{2} k^{2}\right)$.

- Fix any $p_{1}, p_{4} \in P$
- We show that there are at most $4 k^{2}$ different flips $p_{1} p_{3}, p_{2} p_{4} \rightarrow p_{1} p_{4}, p_{2} p_{3}$

Upper bound: $g^{\prime}(n)$

Lemma

For any k, number of distinct flips with $|\Delta \Phi|<k$ is $O\left(n^{2} k^{2}\right)$.

- Fix any $p_{1}, p_{4} \in P$
- We show that there are at most $4 k^{2}$ different flips $p_{1} p_{3}, p_{2} p_{4} \rightarrow p_{1} p_{4}, p_{2} p_{3}$
- Goal: at most $2 k$ possible choices of p_{3}

Upper bound: $g^{\prime}(n)$

Lemma

For any k, number of distinct flips with $|\Delta \Phi|<k$ is $O\left(n^{2} k^{2}\right)$.

- Fix any $p_{1}, p_{4} \in P$
- We show that there are at most $4 k^{2}$ different flips $p_{1} p_{3}, p_{2} p_{4} \rightarrow p_{1} p_{4}, p_{2} p_{3}$
- Goal: at most $2 k$ possible choices of p_{3}
- $p_{1} p_{4}$ can be chosen in $O\left(n^{2}\right)$ ways, so in total $O\left(n^{2} k^{2}\right)$ flips in any sequence

Upper bound: $g^{\prime}(n)$

- Goal: at most $2 k$ possible choices of p_{3}

Upper bound: $g^{\prime}(n)$

- Goal: at most $2 k$ possible choices of p_{3}
- Sweep all points by angle from $p_{1} p_{4}$

Upper bound: $g^{\prime}(n)$

- Goal: at most $2 k$ possible choices of p_{3}
- Sweep all points by angle from $p_{1} p_{4}$
- Let Q be k closest points to the left and k closest points to the right ($2 k$ total)

Upper bound: $g^{\prime}(n)$

- Goal: at most $2 k$ possible choices of p_{3}
- Sweep all points by angle from $p_{1} p_{4}$
- Let Q be k closest points to the left and k closest points to the right ($2 k$ total)
- Claim: $p_{3} \in Q$

Upper bound: $g^{\prime}(n)$

- Claim: $p_{3} \in Q$

Upper bound: $g^{\prime}(n)$

- Claim: $p_{3} \in Q$
- Assume $p_{3} \notin Q$, WLOG above $p_{1} p_{4}$

Upper bound: $g^{\prime}(n)$

- Claim: $p_{3} \in Q$
- Assume $p_{3} \notin Q$, WLOG above $p_{1} p_{4}$
- $p_{2} p_{4}$ intersected $p_{1} p_{3}$ before the flip $\Longrightarrow p_{2} p_{4}$ intersected lines $p_{1} q_{i}$ for $1 \leq i \leq k$

Upper bound: $g^{\prime}(n)$

- Claim: $p_{3} \in Q$
- Assume $p_{3} \notin Q$, WLOG above $p_{1} p_{4}$
- $p_{2} p_{4}$ intersected $p_{1} p_{3}$ before the flip $\Longrightarrow p_{2} p_{4}$ intersected lines $p_{1} q_{i}$ for $1 \leq i \leq k$
- It means $|\Delta \Phi| \geq k$ - contradiction

Distinct flips: conclusion

Definition

2 flips are distinct if the sets of 4 segments involved in the flips are different. $g^{\prime}(n)=$ longest sequence of distinct flips over all matchings on $2 n$ points

Theorem

$g^{\prime}(n)=O\left(n^{\frac{8}{3}}\right)$

- Repeated flips in a sequence appear to be pretty rare

Distinct flips: conclusion

Definition

2 flips are distinct if the sets of 4 segments involved in the flips are different. $g^{\prime}(n)=$ longest sequence of distinct flips over all matchings on $2 n$ points

Theorem

$g^{\prime}(n)=O\left(n^{\frac{8}{3}}\right)$

- Repeated flips in a sequence appear to be pretty rare
- So it's believed that $g(n)$ should be $O\left(g^{\prime}(n)\right)$

References

Edouard Bonnet and Tillmann Miltzow (2016)
Flip Distance to a Non-crossing Perfect Matching
arXiv

- Guilherme D. da Fonseca, Yan Gerard and Bastien Rivier (2023)

On the Longest Flip Sequence to Untangle Segments in the Plane
arXiv

The End

