Improved lower bounds on the number of edges in list critical and online list critical graphs

Authors: H.A. Kierstead and Landon Rabern

Rafał Pyzik

Introduction

A *k*-coloring of a graph G is a function $\pi : V(G) \to \{1, ..., k\}$ such that $\pi(x) \neq \pi(y)$ for each edge xy. $\chi(G)$ is the least integer k such that G is k-colorable.

Introduction

A *k*-coloring of a graph G is a function $\pi : V(G) \to \{1, ..., k\}$ such that $\pi(x) \neq \pi(y)$ for each edge xy. $\chi(G)$ is the least integer k such that G is k-colorable.

A graph G is k-critical if G is not (k-1)-colorable, but every proper subgraph of G is.

A graph G is *L*-colorable if it has a proper coloring using colors from a set of lists L.

For $f: V(G) \to \mathbb{N}$, a list assignment L is an f-assignment if |L(v)| = f(v) for each $v \in V(G)$.

A graph G is *L*-colorable if it has a proper coloring using colors from a set of lists L.

For $f : V(G) \to \mathbb{N}$, a list assignment L is an f-assignment if |L(v)| = f(v) for each $v \in V(G)$.

G is *f-choosable* if G is L-colorable for every *f*-assignment.

G is k-choosable if G is f-choosable for |f(v)| = k.

A graph G is *L*-colorable if it has a proper coloring using colors from a set of lists L.

For $f : V(G) \to \mathbb{N}$, a list assignment L is an f-assignment if |L(v)| = f(v) for each $v \in V(G)$.

G is *f*-choosable if *G* is *L*-colorable for every *f*-assignment. *G* is *k*-choosable if *G* is *f*-choosable for |f(v)| = k.

A graph G is k-list-critical if there exists L with |L(v)| = k - 1 such that G is not L-colorable, but every proper subgraph of G is L-colorable.

If G is k-critical then $\delta(G) \ge k - 1$, so $2 \|G\| \ge (k - 1)|G|$.

If G is k-critical then $\delta(G) \ge k - 1$, so $2 ||G|| \ge (k - 1)|G|$.

In 2012, Kostochka and Yancey proved that every k-critical graph G with $k\geq 4$ must satisfy

$$\|G\| \ge \left\lceil rac{(k+1)(k-2)|G| - k(k-3)}{2(k-1)}
ight
ceil$$

٠

- If G is k-critical then $\delta(G) \ge k 1$, so $2 ||G|| \ge (k 1)|G|$. In 2012, Kostochka and Yancey proved that every k-critical graph G with
- $k \ge 4$ must satisfy

$$\|G\| \ge \left\lceil rac{(k+1)(k-2)|G| - k(k-3)}{2(k-1)}
ight
ceil$$

We prove that every k-list-critical graph $(k \ge 7)$ on $n \ge k + 2$ vertices has at least

$$\frac{1}{2}\left(k-1+\frac{k-3}{(k-c)(k-1)+k-3}\right)n$$

edges where

$$c = (k-3)\left(\frac{1}{2} - \frac{1}{(k-1)(k-2)}\right).$$

.

- If G is k-critical then $\delta(G) \ge k 1$, so $2 ||G|| \ge (k 1)|G|$. In 2012, Kostochka and Yancey proved that every k-critical graph G with
- $k \ge 4$ must satisfy

$$\|G\| \ge \left\lceil rac{(k+1)(k-2)|G| - k(k-3)}{2(k-1)}
ight
ceil$$

We prove that every k-list-critical graph $(k \ge 7)$ on $n \ge k + 2$ vertices has at least

$$\frac{1}{2}\left(k-1+\frac{k-3}{(k-c)(k-1)+k-3}\right)n$$

edges where

$$c = (k-3)\left(\frac{1}{2} - \frac{1}{(k-1)(k-2)}\right).$$

If $\delta(G) \ge k$ the bound holds, so we may assume $\delta(G) = k - 1$.

.

	k-Critical G				k-ListCritical G	
	Gallai	Kriv	KS	KY	KS	Here
k	$d(G) \ge$	$d(G) \ge$	$d(G) \geq$	$d(G) \geq$	$d(G) \ge$	$d(G) \ge$
4	3.0769	3.1429	—	3.3333	—	—
5	4.0909	4.1429		4.5000		4.0984
6	5.0909	5.1304	5.0976	5.6000		5.1053
7	6.0870	6.1176	6.0990	6.6667		6.1149
8	7.0820	7.1064	7.0980	7.7143		7.1128
9	8.0769	8.0968	8.0959	8.7500	8.0838	8.1094
10	9.0722	9.0886	9.0932	9.7778	9.0793	9.1055
15	14.0541	14.0618	14.0785	14.8571	14.0610	14.0864
20	19.0428	19.0474	19.0666	19.8947	19.0490	19.0719

Table: History of lower bounds on the average degree d(G) of k-critical and k-list-critical graphs G.

• A subgraph H of a directed multigraph is called *Eulerian* if $d_H^-(v) = d_H^+(v)$ for every $v \in V(H)$.

- A subgraph *H* of a directed multigraph is called *Eulerian* if $d_H^-(v) = d_H^+(v)$ for every $v \in V(H)$.
- *H* is *even* if ||H|| is even and *odd* otherwise.
- Let EE(D) be the number of even spanning Eulerian subgraphs of D.
- Let EO(D) be the number of odd spanning Eulerian subgraphs of D.
- EE(D) > 0, because of edgeless subgraph.

- A subgraph *H* of a directed multigraph is called *Eulerian* if $d_H^-(v) = d_H^+(v)$ for every $v \in V(H)$.
- *H* is *even* if ||H|| is even and *odd* otherwise.
- Let EE(D) be the number of even spanning Eulerian subgraphs of D.
- Let EO(D) be the number of odd spanning Eulerian subgraphs of D.
- EE(D) > 0, because of edgeless subgraph.

A graph G is f-Alon-Tarsi or f-AT if G has an orientation D where $f(v) \ge d_D^+(v) + 1$ for all $v \in V(D)$ and $EE(D) \neq EO(D)$.

If a graph G is f-AT, then G is f-choosable.

Combinatorial Nullstellensatz

Let $f(x_1, \ldots, x_n)$ be a polynomial over \mathbb{Z} . Suppose that the coefficient of the monomial $x_1^{k_1} \cdots x_n^{k_n}$ in f is nonzero and $k_1 + \ldots + k_n$ is equal to the total degree of f. If A_1, \ldots, A_n are finite subsets of \mathbb{Z} such that $|A_i| > k_i$ then there exist $a_1 \in A_1, \ldots, a_n \in A_n$ such that $f(a_1, \ldots, a_n) \neq 0$.

Combinatorial Nullstellensatz

Let $f(x_1, \ldots, x_n)$ be a polynomial over \mathbb{Z} . Suppose that the coefficient of the monomial $x_1^{k_1} \cdots x_n^{k_n}$ in f is nonzero and $k_1 + \ldots + k_n$ is equal to the total degree of f. If A_1, \ldots, A_n are finite subsets of \mathbb{Z} such that $|A_i| > k_i$ then there exist $a_1 \in A_1, \ldots, a_n \in A_n$ such that $f(a_1, \ldots, a_n) \neq 0$.

8/24

• an orientation D corresponds to a monomial

- an orientation D corresponds to a monomial
- coefficient is equal to $\pm |EE(D) EO(D)|$

- an orientation D corresponds to a monomial
- coefficient is equal to $\pm |EE(D) EO(D)|$

- an orientation D corresponds to a monomial
- coefficient is equal to $\pm |EE(D) EO(D)|$
- outdegree in the graph corresponds to the degree in the monomial

The Alon-Tarsi number of a graph G is the least k such that G is f-AT where f(v) = k for all $v \in V(G)$.

The Alon-Tarsi number of a graph G is the least k such that G is f-AT where f(v) = k for all $v \in V(G)$.

$\chi(G) \leq ch(G) \leq ch_{OL}(G) \leq AT(G) \leq col(G)$

The Alon-Tarsi number of a graph G is the least k such that G is f-AT where f(v) = k for all $v \in V(G)$.

$\chi(G) \leq ch(G) \leq ch_{OL}(G) \leq AT(G) \leq col(G)$

G is *k*-AT-critical if $AT(G) \ge k$ and AT(H) < k for all proper induced subgraphs *H* of *G*.

A graph G is AT-reducible to H if H is a nonempty induced proper subgraph of G which is f_H -AT where $f_H(v) = f(G) + d_H(v) - d_G(v)$ for all $v \in V(H)$. If G is not AT-reducible to any nonempty induced subgraph, then it is AT-irreducible. A graph G is AT-reducible to H if H is a nonempty induced proper subgraph of G which is f_H -AT where $f_H(v) = f(G) + d_H(v) - d_G(v)$ for all $v \in V(H)$. If G is not AT-reducible to any nonempty induced subgraph, then it is AT-irreducible.

Lemma

- Suppose G is reducible to H
- Let L be a (k-1)-assignment on G such that G is L-critical
- Let π be a coloring of G H

- Suppose G is reducible to H
- Let L be a (k-1)-assignment on G such that G is L-critical
- Let π be a coloring of G H

$$L'(v) := L(v) - \pi(N(v) \cap V(G - H)) \text{ for } v \in H$$
$$|L'(v)| \ge |L(v)| - (d_G(v) - d_H(v)) = k - 1 + d_H(v) - d_G(v)$$

- Suppose G is reducible to H
- Let L be a (k-1)-assignment on G such that G is L-critical
- Let π be a coloring of G H

$$L'(v) := L(v) - \pi(N(v) \cap V(G - H)) \text{ for } v \in H$$
$$|L'(v)| \ge |L(v)| - (d_G(v) - d_H(v)) = k - 1 + d_H(v) - d_G(v)$$

- *H* is f_H -choosable so it is *L*'-colorable
- G is L-colorable contradiction

AT-irreducibility

Let π be a coloring of G - H. $L'(v) := L(v) - \pi(N(v) \cap V(G - H))$ for $v \in H$

AT-irreducibility

Let π be a coloring of G - H. $L'(v) := L(v) - \pi(N(v) \cap V(G - H))$ for $v \in H$

AT-irreducibility

Let π be a coloring of G - H. $L'(v) := L(v) - \pi(N(v) \cap V(G - H))$ for $v \in H$

AT-irreducibility

Let π be a coloring of G - H. $L'(v) := L(v) - \pi(N(v) \cap V(G - H))$ for $v \in H$

Lemma

Let G be a graph and $f: V(G) \to \mathbb{N}$. If H is an induced proper subgraph of G such that G - H is $f|_{V(G-H)}$ -AT and H is f_H -AT where $f_H(v) = f(v) + d_H(v) - d_G(v)$, then G is f-AT.

Lemma

Let G be a graph and $f: V(G) \to \mathbb{N}$. If H is an induced proper subgraph of G such that G - H is $f|_{V(G-H)}$ -AT and H is f_H -AT where $f_H(v) = f(v) + d_H(v) - d_G(v)$, then G is f-AT.

- Take an orientation of G H demonstrating that it is $f|_{V(G-H)}$ -AT
- Take an orientation of H demonstrating that it is f_H -AT
- Orient edges between G H and H into G H
- For each $v \in V(H)$ the out-degree has increased by $d_G(v) d_H(v)$

AT-irreducibility

- Take an orientation of G H demonstrating that it is $f|_{V(G-H)}$ -AT
- Take an orientation of H demonstrating that it is f_H -AT
- Orient edges between G H and H into G H.
- For each $v \in V(H)$ the out-degree has increased by $d_G(v) d_H(v)$

No directed cycle has vertices both in H and G - H. The Eulerian subgraphs of G are just all pairings of Eulerian subgraphs of H and G - H. l

No directed cycle has vertices both in H and G - H. The Eulerian subgraphs of G are just all pairings of Eulerian subgraphs of H and G - H.

Number of Eulerian subgraphs:

$$EE(D) - EO(G) = EE(H)EE(G - H) + EO(H)EO(G - H) - (EE(H)EO(G - H) + EO(H)EE(G - H)) = = (EE(H) - EO(H))(EE(G - H) - EO(G - H)) \neq 0$$

No directed cycle has vertices both in H and G - H. The Eulerian subgraphs of G are just all pairings of Eulerian subgraphs of H and G - H.

Number of Eulerian subgraphs:

$$EE(D) - EO(G) = EE(H)EE(G - H) + EO(H)EO(G - H) - (EE(H)EO(G - H) + EO(H)EE(G - H)) = = (EE(H) - EO(H))(EE(G - H) - EO(G - H)) \neq 0$$

Lemma

If G is a k-AT-critical graph, then G is AT-irreducible.

A *Gallai tree* is a connected graph such that every block is either a clique or an odd cycle.

Source: https://www.researchgate.net/figure/A-Gallai-tree-with-15-blocks_fig4_260483294

A *Gallai tree* is a connected graph such that every block is either a clique or an odd cycle.

Source: https://www.researchgate.net/figure/A-Gallai-tree-with-15-blocks_fig4_260483294

Let \mathcal{T}_k be the Gallai trees with maximum degree at most k-1, excepting \mathcal{K}_k .

For a graph G, let $W_k(G)$ be the set of vertices of G that are contained in some K_{k-1} in G.

For a graph G, let $W_k(G)$ be the set of vertices of G that are contained in some K_{k-1} in G.

Lemma 3.2

Let $r \ge 0$, $k \ge r + 4$ and $G \ne K_k$ be a graph with $x \in V(G)$ such that:

$$\ \, {\bf 0} \ \ \, {\cal G}-x\in {\cal T}_k; \ {\rm and} \ \ \,$$

2
$$d_G(x) \ge r+2$$
; and

•
$$|N(x) \cap W^k(G-x)| \ge 1$$
; and

•
$$d_G(v) \leq k-1$$
 for all $v \in V(G-x)$.

Then G is f-AT where $f(x) = d_G(x) - r$ and $f(v) = d_G(v)$ for all $v \in V(G - x)$.

Lemma 3.3 and 3.4

Lemma 3.3 (Rubin)

A 2-connected graph is either complete, an odd cycle or contains an induced even cycle with at most one chord.

Lemma 3.3 and 3.4

Lemma 3.3 (Rubin)

A 2-connected graph is either complete, an odd cycle or contains an induced even cycle with at most one chord.

Define $d_0: V(G) \to \mathbb{N}$ by $d_0(v) := d_G(v)$.

Connected graphs that are not d_0 -choosable are Gallai trees.

Lemma 3.3 and 3.4

Lemma 3.3 (Rubin)

A 2-connected graph is either complete, an odd cycle or contains an induced even cycle with at most one chord.

Define $d_0: V(G) \to \mathbb{N}$ by $d_0(v) \coloneqq d_G(v)$.

Connected graphs that are not d_0 -choosable are Gallai trees.

Lemma 3.4

For a connected graph G, the following are equivalent:

- G is not a Gallai tree,
- 2 G contains an even cycle with at most one chord,
- **3** G is d_0 -choosable,
- G is d₀-AT,
- G has an orientation D where $d_G(v) \ge d_D^+(v) + 1$ for all $v \in V(D)$, $EE(D) \in \{2,3\}$ and $EO(D) \in \{0,1\}$.

2) G contains an even cycle with at most one chord \implies 5) G has an orientation D where $d_G(v) \ge d_D^+(v) + 1$ for all $v \in V(D)$, $EE(D) \in \{2,3\}$ and $EO(D) \in \{0,1\}$

2) G contains an even cycle with at most one chord \implies 5) G has an orientation D where $d_G(v) \ge d_D^+(v) + 1$ for all $v \in V(D)$, $EE(D) \in \{2,3\}$ and $EO(D) \in \{0,1\}$

- Let *H* be an induced even cycle with at most one chord.
- Orient *H* clockwise and the chord arbitrarily.

2) G contains an even cycle with at most one chord \implies 5) G has an orientation D where $d_G(v) \ge d_D^+(v) + 1$ for all $v \in V(D)$, $EE(D) \in \{2,3\}$ and $EO(D) \in \{0,1\}$

- Let *H* be an induced even cycle with at most one chord.
- Orient H clockwise and the chord arbitrarily.
- Contract H to x_H to obtain H'.
- Take a spanning tree of H' rooted at x_H and orient the edges away from x_H .
- Orientation is acyclic, except for *H*.

Rafał Pyzik

2) G contains an even cycle with at most one chord \implies 5) G has an orientation D where $d_G(v) \ge d_D^+(v) + 1$ for all $v \in V(D)$, $EE(D) \in \{2,3\}$ and $EO(D) \in \{0,1\}$

- Let *H* be an induced even cycle with at most one chord.
- Orient H clockwise and the chord arbitrarily.
- Contract H to x_H to obtain H'.
- Take a spanning tree of H' rooted at x_H and orient the edges away from x_H .
- Orientation is acyclic, except for *H*.

Rafał Pyzik

- Let $k \ge 5$ and let G be a graph with $x \in V(G)$ such that:
 - $K_k \not\subseteq G$; and
 - **2** G x has t components H_1, H_2, \ldots, H_t , and all are in \mathcal{T}_k ; and
 - $d_G(v) \leq k-1$ for all $v \in V(G-x)$; and
 - $|N(x) \cap W^k(H_i)| \ge 1$ for $i \in [t]$; and
 - **5** $d_G(x) \ge t + 2.$

Then G is f-AT where $f(x) = d_G(x) - 1$ and $f(v) = d_G(v)$ for all $v \in V(G - x)$.

For a graph G, let $\{X, Y\}$ be a partition of V(G) and $k \ge 4$. Let $\mathcal{B}_k(X, Y)$ be the bipartite graph with one part Y and the other part the components of G[X]. Put an edge between $y \in Y$ and a component T of G[X] iff $N(y) \cap W^k(T) \neq \emptyset$.

For a graph G, let $\{X, Y\}$ be a partition of V(G) and $k \ge 4$. Let $\mathcal{B}_k(X, Y)$ be the bipartite graph with one part Y and the other part the components of G[X]. Put an edge between $y \in Y$ and a component T of G[X] iff $N(y) \cap W^k(T) \neq \emptyset$.

Lemma 3.9

Let $k \ge 7$ and let G be a graph with $Y \subseteq V(G)$ such that:

- $K_k \not\subseteq G$; and
- **2** the components of G Y are in \mathcal{T}_k ; and
- 3 $d_G(v) \leq k-1$ for all $v \in V(G-Y)$; and
- with $\mathcal{B} := \mathcal{B}_k(V(G Y), Y)$ we have $\delta(\mathcal{B}) \ge 3$.

Then G has an induced subgraph G' that is f-AT where $f(y) = d_{G'}(y) - 1$ for $y \in Y$ and $f(v) = d_{G'}(v)$ for all $v \in V(G' - Y)$.

$$\alpha_k := \frac{1}{2} - \frac{1}{(k-1)(k-2)}$$
$$g_k(n,c) := \left(k - 1 + \frac{k-3}{(k-c)(k-1) + k - 3}\right)n$$

Theorem 4.4

If G is an AT-irreducible graph with $\delta(G) \ge 4$ and $\omega(G) \le \delta(G)$, then $2 \|G\| \ge g_{\delta(G)+1}(|G|, c)$ where $c := (\delta(G) - 2)\alpha_{\delta(G)+1}$ when $\delta(G) \ge 6$ and $c := (\delta(G) - 3)\alpha_{\delta(G)+1}$ when $\delta(G) \in \{4, 5\}$.

Corollary 5.1

For $k \ge 5$ and $G \ne K_k$ a k-list-critical graph, we have $2 ||G|| \ge g_k(|G|, c)$ where $c := (k-3)\alpha_k$ when $k \ge 7$ and $c := (k-4)\alpha_k$ when $k \in \{5, 6\}$.

Corollary 5.1

For $k \ge 5$ and $G \ne K_k$ a k-list-critical graph, we have $2 ||G|| \ge g_k(|G|, c)$ where $c := (k-3)\alpha_k$ when $k \ge 7$ and $c := (k-4)\alpha_k$ when $k \in \{5, 6\}$.

Corollary 5.2

For $k \ge 5$ and $G \ne K_k$ an online k-list-critical graph, we have $2 ||G|| \ge g_k(|G|, c)$ where $c := (k - 3)\alpha_k$ when $k \ge 7$ and $c := (k - 4)\alpha_k$ when $k \in \{5, 6\}$.

Corollary 5.1

For $k \ge 5$ and $G \ne K_k$ a k-list-critical graph, we have $2 ||G|| \ge g_k(|G|, c)$ where $c := (k-3)\alpha_k$ when $k \ge 7$ and $c := (k-4)\alpha_k$ when $k \in \{5, 6\}$.

Corollary 5.2

For $k \ge 5$ and $G \ne K_k$ an online k-list-critical graph, we have $2 ||G|| \ge g_k(|G|, c)$ where $c := (k - 3)\alpha_k$ when $k \ge 7$ and $c := (k - 4)\alpha_k$ when $k \in \{5, 6\}$.

Corollary 5.3

For $k \ge 5$ and $G \ne K_k$ a k-AT-critical graph, we have $2 ||G|| \ge g_k(|G|, c)$ where $c := (k-3)\alpha_k$ when $k \ge 7$ and $c := (k-4)\alpha_k$ when $k \in \{5, 6\}$.