Improved lower bounds on the number of edges in list critical and online list critical graphs

Authors: H.A. Kierstead and Landon Rabern

Rafał Pyzik

Introduction

A k-coloring of a graph G is a function $\pi: V(G) \rightarrow\{1, \ldots, k\}$ such that $\pi(x) \neq \pi(y)$ for each edge $x y$.
$\chi(G)$ is the least integer k such that G is k-colorable.

Introduction

A k-coloring of a graph G is a function $\pi: V(G) \rightarrow\{1, \ldots, k\}$ such that $\pi(x) \neq \pi(y)$ for each edge $x y$.
$\chi(G)$ is the least integer k such that G is k-colorable.
A graph G is k-critical if G is not $(k-1)$-colorable, but every proper subgraph of G is.

Introduction

A graph G is L-colorable if it has a proper coloring using colors from a set of lists L.
For $f: V(G) \rightarrow \mathbb{N}$, a list assignment L is an f-assignment if $|L(v)|=f(v)$ for each $v \in V(G)$.

Introduction

A graph G is L-colorable if it has a proper coloring using colors from a set of lists L.
For $f: V(G) \rightarrow \mathbb{N}$, a list assignment L is an f-assignment if $|L(v)|=f(v)$ for each $v \in V(G)$.
G is f-choosable if G is L-colorable for every f-assignment.
G is k-choosable if G is f-choosable for $|f(v)|=k$.

Introduction

A graph G is L-colorable if it has a proper coloring using colors from a set of lists L.
For $f: V(G) \rightarrow \mathbb{N}$, a list assignment L is an f-assignment if $|L(v)|=f(v)$ for each $v \in V(G)$.
G is f-choosable if G is L-colorable for every f-assignment.
G is k-choosable if G is f-choosable for $|f(v)|=k$.
A graph G is k-list-critical if there exists L with $|L(v)|=k-1$ such that G is not L-colorable, but every proper subgraph of G is L-colorable.

Main result

If G is k-critical then $\delta(G) \geq k-1$, so $2\|G\| \geq(k-1)|G|$.

Main result

If G is k-critical then $\delta(G) \geq k-1$, so $2\|G\| \geq(k-1)|G|$.
In 2012, Kostochka and Yancey proved that every k-critical graph G with $k \geq 4$ must satisfy

$$
\|G\| \geq\left\lceil\frac{(k+1)(k-2)|G|-k(k-3)}{2(k-1)}\right\rceil \text {. }
$$

Main result

If G is k-critical then $\delta(G) \geq k-1$, so $2\|G\| \geq(k-1)|G|$.
In 2012, Kostochka and Yancey proved that every k-critical graph G with $k \geq 4$ must satisfy

$$
\|G\| \geq\left\lceil\frac{(k+1)(k-2)|G|-k(k-3)}{2(k-1)}\right\rceil \text {. }
$$

We prove that every k-list-critical graph $(k \geq 7)$ on $n \geq k+2$ vertices has at least

$$
\frac{1}{2}\left(k-1+\frac{k-3}{(k-c)(k-1)+k-3}\right) n
$$

edges where

$$
c=(k-3)\left(\frac{1}{2}-\frac{1}{(k-1)(k-2)}\right) .
$$

Main result

If G is k-critical then $\delta(G) \geq k-1$, so $2\|G\| \geq(k-1)|G|$.
In 2012, Kostochka and Yancey proved that every k-critical graph G with $k \geq 4$ must satisfy

$$
\|G\| \geq\left\lceil\frac{(k+1)(k-2)|G|-k(k-3)}{2(k-1)}\right\rceil .
$$

We prove that every k-list-critical graph $(k \geq 7)$ on $n \geq k+2$ vertices has at least

$$
\frac{1}{2}\left(k-1+\frac{k-3}{(k-c)(k-1)+k-3}\right) n
$$

edges where

$$
c=(k-3)\left(\frac{1}{2}-\frac{1}{(k-1)(k-2)}\right) .
$$

If $\delta(G) \geq k$ the bound holds, so we may assume $\delta(G)=k-1$.

History of results

	k-Critical G					k-ListCritical G	
	Gallai	Kriv	KS	KY	KS	Here	
k	$d(G) \geq$						
4	3.0769	3.1429	-	3.3333	-	-	
5	4.0909	4.1429	-	4.5000	-	$\mathbf{4 . 0 9 8 4}$	
6	5.0909	5.1304	5.0976	5.6000	-	$\mathbf{5 . 1 0 5 3}$	
7	6.0870	6.1176	6.0990	6.6667	-	$\mathbf{6 . 1 1 4 9}$	
8	7.0820	7.1064	7.0980	7.7143	-	$\mathbf{7 . 1 1 2 8}$	
9	8.0769	8.0968	8.0959	8.7500	8.0838	$\mathbf{8 . 1 0 9 4}$	
10	9.0722	9.0886	9.0932	9.7778	9.0793	$\mathbf{9 . 1 0 5 5}$	
15	14.0541	14.0618	14.0785	14.8571	14.0610	$\mathbf{1 4 . 0 8 6 4}$	
20	19.0428	19.0474	19.0666	19.8947	19.0490	$\mathbf{1 9 . 0 7 1 9}$	

Table: History of lower bounds on the average degree $d(G)$ of k-critical and k-list-critical graphs G.

Alon-Tarsi

- A subgraph H of a directed multigraph is called Eulerian if $d_{H}^{-}(v)=d_{H}^{+}(v)$ for every $v \in V(H)$.

Alon-Tarsi

- A subgraph H of a directed multigraph is called Eulerian if $d_{H}^{-}(v)=d_{H}^{+}(v)$ for every $v \in V(H)$.
- H is even if $\|H\|$ is even and odd otherwise.
- Let $E E(D)$ be the number of even spanning Eulerian subgraphs of D.
- Let $E O(D)$ be the number of odd spanning Eulerian subgraphs of D.
- $E E(D)>0$, because of edgeless subgraph.

Alon-Tarsi

- A subgraph H of a directed multigraph is called Eulerian if $d_{H}^{-}(v)=d_{H}^{+}(v)$ for every $v \in V(H)$.
- H is even if $\|H\|$ is even and odd otherwise.
- Let $E E(D)$ be the number of even spanning Eulerian subgraphs of D.
- Let $E O(D)$ be the number of odd spanning Eulerian subgraphs of D.
- $E E(D)>0$, because of edgeless subgraph.

A graph G is f-Alon-Tarsi or f-AT if G has an orientation D where $f(v) \geq d_{D}^{+}(v)+1$ for all $v \in V(D)$ and $E E(D) \neq E O(D)$.

Alon-Tarsi

Alon-Tarsi

Alon-Tarsi

Alon-Tarsi

Alon-Tarsi

Lemma

If a graph G is f-AT, then G is f-choosable.

Alon-Tarsi

Combinatorial Nullstellensatz

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial over \mathbb{Z}. Suppose that the coefficient of the monomial $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ in f is nonzero and $k_{1}+\ldots+k_{n}$ is equal to the total degree of f. If A_{1}, \ldots, A_{n} are finite subsets of \mathbb{Z} such that $\left|A_{i}\right|>k_{i}$ then there exist $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$ such that $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

Alon-Tarsi

Combinatorial Nullstellensatz

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial over \mathbb{Z}. Suppose that the coefficient of the monomial $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ in f is nonzero and $k_{1}+\ldots+k_{n}$ is equal to the total degree of f. If A_{1}, \ldots, A_{n} are finite subsets of \mathbb{Z} such that $\left|A_{i}\right|>k_{i}$ then there exist $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$ such that $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

$$
\left(x_{1}-x_{2}\right)\left(x_{2}-x_{4}\right)\left(x_{1}-x_{4}\right)\left(x_{1}-x_{5}\right)\left(x_{3}-x_{5}\right)\left(x_{3}-x_{4}\right)
$$

Alon-Tarsi

$$
\left(x_{1}-x_{2}\right)\left(x_{2}-x_{4}\right)\left(x_{1}-x_{4}\right)\left(x_{1}-x_{5}\right)\left(x_{3}-x_{5}\right)\left(x_{3}-x_{4}\right)
$$

Alon-Tarsi

$$
\left(x_{1}-x_{2}\right)\left(x_{2}-x_{4}\right)\left(x_{1}-x_{4}\right)\left(x_{1}-x_{5}\right)\left(x_{3}-x_{5}\right)\left(x_{3}-x_{4}\right)
$$

- an orientation D corresponds to a monomial

Alon-Tarsi

$$
\left(x_{1}-x_{2}\right)\left(x_{2}-x_{4}\right)\left(x_{1}-x_{4}\right)\left(x_{1}-x_{5}\right)\left(x_{3}-x_{5}\right)\left(x_{3}-x_{4}\right)
$$

- an orientation D corresponds to a monomial
- coefficient is equal to $\pm|E E(D)-E O(D)|$

Alon-Tarsi

$$
\left(x_{1}-x_{2}\right)\left(x_{2}-x_{4}\right)\left(x_{1}-x_{4}\right)\left(x_{1}-x_{5}\right)\left(x_{3}-x_{5}\right)\left(x_{3}-x_{4}\right)
$$

- an orientation D corresponds to a monomial
- coefficient is equal to $\pm|E E(D)-E O(D)|$

Alon-Tarsi

$$
\left(x_{1}-x_{2}\right)\left(x_{2}-x_{4}\right)\left(x_{1}-x_{4}\right)\left(x_{1}-x_{5}\right)\left(x_{3}-x_{5}\right)\left(x_{3}-x_{4}\right)
$$

- an orientation D corresponds to a monomial
- coefficient is equal to $\pm|E E(D)-E O(D)|$
- outdegree in the graph corresponds to the degree in the monomial

Alon-Tarsi number

The Alon-Tarsi number of a graph G is the least k such that G is f-AT where $f(v)=k$ for all $v \in V(G)$.

Alon-Tarsi number

The Alon-Tarsi number of a graph G is the least k such that G is f-AT where $f(v)=k$ for all $v \in V(G)$.

$$
\chi(G) \leq \operatorname{ch}(G) \leq \operatorname{ch} O L(G) \leq A T(G) \leq \operatorname{col}(G)
$$

Alon-Tarsi number

The Alon-Tarsi number of a graph G is the least k such that G is f-AT where $f(v)=k$ for all $v \in V(G)$.

$$
\chi(G) \leq \operatorname{ch}(G) \leq \operatorname{ch}_{O L}(G) \leq A T(G) \leq \operatorname{col}(G)
$$

G is k-AT-critical if $A T(G) \geq k$ and $A T(H)<k$ for all proper induced subgraphs H of G.

AT-irreducibility

A graph G is $A T$-reducible to H if H is a nonempty induced proper subgraph of G which is f_{H}-AT where $f_{H}(v)=f(G)+d_{H}(v)-d_{G}(v)$ for all $v \in V(H)$.
If G is not AT-reducible to any nonempty induced subgraph, then it is AT-irreducible.

AT-irreducibility

A graph G is $A T$-reducible to H if H is a nonempty induced proper subgraph of G which is f_{H}-AT where $f_{H}(v)=f(G)+d_{H}(v)-d_{G}(v)$ for all $v \in V(H)$.
If G is not AT-reducible to any nonempty induced subgraph, then it is AT-irreducible.

Lemma

If G is a k-list-critical graph, then G is AT-irreducible.

AT-irreducibility

Lemma

If G is a k-list-critical graph, then G is AT-irreducible.

- Suppose G is reducible to H
- Let L be a $(k-1)$-assignment on G such that G is L-critical
- Let π be a coloring of $G-H$

AT-irreducibility

Lemma

If G is a k-list-critical graph, then G is AT-irreducible.

- Suppose G is reducible to H
- Let L be a $(k-1)$-assignment on G such that G is L-critical
- Let π be a coloring of $G-H$

$$
\begin{gathered}
L^{\prime}(v):=L(v)-\pi(N(v) \cap V(G-H)) \text { for } v \in H \\
\left|L^{\prime}(v)\right| \geq|L(v)|-\left(d_{G}(v)-d_{H}(v)\right)=k-1+d_{H}(v)-d_{G}(v)
\end{gathered}
$$

AT-irreducibility

Lemma

If G is a k-list-critical graph, then G is AT-irreducible.

- Suppose G is reducible to H
- Let L be a $(k-1)$-assignment on G such that G is L-critical
- Let π be a coloring of $G-H$

$$
\begin{gathered}
L^{\prime}(v):=L(v)-\pi(N(v) \cap V(G-H)) \text { for } v \in H \\
\left|L^{\prime}(v)\right| \geq|L(v)|-\left(d_{G}(v)-d_{H}(v)\right)=k-1+d_{H}(v)-d_{G}(v)
\end{gathered}
$$

- H is f_{H}-choosable so it is L^{\prime}-colorable
- G is L-colorable - contradiction

AT-irreducibility

Let π be a coloring of $G-H$.
$L^{\prime}(v):=L(v)-\pi(N(v) \cap V(G-H))$ for $v \in H$

AT-irreducibility

Let π be a coloring of $G-H$.
$L^{\prime}(v):=L(v)-\pi(N(v) \cap V(G-H))$ for $v \in H$

AT-irreducibility

Let π be a coloring of $G-H$.
$L^{\prime}(v):=L(v)-\pi(N(v) \cap V(G-H))$ for $v \in H$

AT-irreducibility

Let π be a coloring of $G-H$.
$L^{\prime}(v):=L(v)-\pi(N(v) \cap V(G-H))$ for $v \in H$

AT-irreducibility

Lemma

Let G be a graph and $f: V(G) \rightarrow \mathbb{N}$. If H is an induced proper subgraph of G such that $G-H$ is $\left.f\right|_{V(G-H)}$-AT and H is f_{H}-AT where $f_{H}(v)=f(v)+d_{H}(v)-d_{G}(v)$, then G is $f-A T$.

AT-irreducibility

Lemma

Let G be a graph and $f: V(G) \rightarrow \mathbb{N}$. If H is an induced proper subgraph of G such that $G-H$ is $\left.f\right|_{V(G-H)}$-AT and H is f_{H}-AT where $f_{H}(v)=f(v)+d_{H}(v)-d_{G}(v)$, then G is $f-A T$.

- Take an orientation of $G-H$ demonstrating that it is $\left.f\right|_{V(G-H)}$-AT
- Take an orientation of H demonstrating that it is f_{H}-AT
- Orient edges between $G-H$ and H into $G-H$
- For each $v \in V(H)$ the out-degree has increased by $d_{G}(v)-d_{H}(v)$

AT-irreducibility

- Take an orientation of $G-H$ demonstrating that it is $\left.f\right|_{V(G-H)}$-AT
- Take an orientation of H demonstrating that it is f_{H}-AT
- Orient edges between $G-H$ and H into $G-H$.
- For each $v \in V(H)$ the out-degree has increased by $d_{G}(v)-d_{H}(v)$

AT-irreducibility

No directed cycle has vertices both in H and $G-H$.
The Eulerian subgraphs of G are just all pairings of Eulerian subgraphs of H and $G-H$.

AT-irreducibility

No directed cycle has vertices both in H and $G-H$.
The Eulerian subgraphs of G are just all pairings of Eulerian subgraphs of H and $G-H$.

Number of Eulerian subgraphs:

$$
\begin{gathered}
E E(D)-E O(G)=E E(H) E E(G-H)+E O(H) E O(G-H)- \\
(E E(H) E O(G-H)+E O(H) E E(G-H))= \\
=(E E(H)-E O(H))(E E(G-H)-E O(G-H)) \neq 0
\end{gathered}
$$

AT-irreducibility

No directed cycle has vertices both in H and $G-H$.
The Eulerian subgraphs of G are just all pairings of Eulerian subgraphs of H and $G-H$.

Number of Eulerian subgraphs:

$$
\begin{gathered}
E E(D)-E O(G)=E E(H) E E(G-H)+E O(H) E O(G-H)- \\
(E E(H) E O(G-H)+E O(H) E E(G-H))= \\
=(E E(H)-E O(H))(E E(G-H)-E O(G-H)) \neq 0
\end{gathered}
$$

Lemma

If G is a k-AT-critical graph, then G is AT-irreducible.

Gallai tree

A Gallai tree is a connected graph such that every block is either a clique or an odd cycle.

Source: https://www.researchgate.net/figure/A-Gallai-tree-with-15-blocks_fig4_260483294

Gallai tree

A Gallai tree is a connected graph such that every block is either a clique or an odd cycle.

Source: https://www.researchgate.net/figure/A-Gallai-tree-with-15-blocks_fig4_260483294

Let \mathcal{T}_{k} be the Gallai trees with maximum degree at most $k-1$, excepting K_{k}.

Lemma 3.2

For a graph G, let $W_{k}(G)$ be the set of vertices of G that are contained in some K_{k-1} in G.

Lemma 3.2

For a graph G, let $W_{k}(G)$ be the set of vertices of G that are contained in some K_{k-1} in G. .

Lemma 3.2

Let $r \geq 0, k \geq r+4$ and $G \neq K_{k}$ be a graph with $x \in V(G)$ such that:
(1) $G-x \in \mathcal{T}_{k}$; and
(2) $d_{G}(x) \geq r+2$; and
(3) $\left|N(x) \cap W^{k}(G-x)\right| \geq 1$; and
(1) $d_{G}(v) \leq k-1$ for all $v \in V(G-x)$.

Then G is f-AT where $f(x)=d_{G}(x)-r$ and $f(v)=d_{G}(v)$ for all $v \in V(G-x)$.

Lemma 3.3 and 3.4

Lemma 3.3 (Rubin)

A 2-connected graph is either complete, an odd cycle or contains an induced even cycle with at most one chord.

Lemma 3.3 and 3.4

Lemma 3.3 (Rubin)

A 2-connected graph is either complete, an odd cycle or contains an induced even cycle with at most one chord.

Define $d_{0}: V(G) \rightarrow \mathbb{N}$ by $d_{0}(v):=d_{G}(v)$.
Connected graphs that are not d_{0}-choosable are Gallai trees.

Lemma 3.3 and 3.4

Lemma 3.3 (Rubin)

A 2-connected graph is either complete, an odd cycle or contains an induced even cycle with at most one chord.

Define $d_{0}: V(G) \rightarrow \mathbb{N}$ by $d_{0}(v):=d_{G}(v)$.
Connected graphs that are not d_{0}-choosable are Gallai trees.

Lemma 3.4

For a connected graph G, the following are equivalent:
(1) G is not a Gallai tree,
(2) G contains an even cycle with at most one chord,
(3) G is d_{0}-choosable,
(9) G is $d_{0}-\mathrm{AT}$,
(5) G has an orientation D where $d_{G}(v) \geq d_{D}^{+}(v)+1$ for all $v \in V(D)$, $E E(D) \in\{2,3\}$ and $E O(D) \in\{0,1\}$.

Lemma 3.4

2) G contains an even cycle with at most one chord \Longrightarrow
3) G has an orientation D where $d_{G}(v) \geq d_{D}^{+}(v)+1$ for all $v \in V(D)$, $E E(D) \in\{2,3\}$ and $E O(D) \in\{0,1\}$

Lemma 3.4

2) G contains an even cycle with at most one chord \Longrightarrow
3) G has an orientation D where $d_{G}(v) \geq d_{D}^{+}(v)+1$ for all $v \in V(D)$, $E E(D) \in\{2,3\}$ and $E O(D) \in\{0,1\}$

- Let H be an induced even cycle with at most one chord.
- Orient H clockwise and the chord arbitrarily.

Lemma 3.4

2) G contains an even cycle with at most one chord \Longrightarrow
3) G has an orientation D where $d_{G}(v) \geq d_{D}^{+}(v)+1$ for all $v \in V(D)$, $E E(D) \in\{2,3\}$ and $E O(D) \in\{0,1\}$

- Let H be an induced even cycle with at most one chord.
- Orient H clockwise and the chord arbitrarily.
- Contract H to x_{H} to obtain H^{\prime}.
- Take a spanning tree of H^{\prime} rooted at x_{H} and orient the edges away from x_{H}.
- Orientation is acyclic, except for H.

Lemma 3.4

2) G contains an even cycle with at most one chord \Longrightarrow
3) G has an orientation D where $d_{G}(v) \geq d_{D}^{+}(v)+1$ for all $v \in V(D)$, $E E(D) \in\{2,3\}$ and $E O(D) \in\{0,1\}$

- Let H be an induced even cycle with at most one chord.
- Orient H clockwise and the chord arbitrarily.
- Contract H to x_{H} to obtain H^{\prime}.
- Take a spanning tree of H^{\prime} rooted at x_{H} and orient the edges away from x_{H}.
- Orientation is acyclic, except for H.

Lemma 3.7

Lemma 3.7

Let $k \geq 5$ and let G be a graph with $x \in V(G)$ such that:
(1) $K_{k} \nsubseteq G$; and
(2) $G-x$ has t components $H_{1}, H_{2}, \ldots, H_{t}$, and all are in \mathcal{T}_{k}; and
(3) $d_{G}(v) \leq k-1$ for all $v \in V(G-x)$; and
(9) $\left|N(x) \cap W^{k}\left(H_{i}\right)\right| \geq 1$ for $i \in[t]$; and
(0) $d_{G}(x) \geq t+2$.

Then G is f-AT where $f(x)=d_{G}(x)-1$ and $f(v)=d_{G}(v)$ for all $v \in V(G-x)$.

Lemma 3.9

For a graph G, let $\{X, Y\}$ be a partition of $V(G)$ and $k \geq 4$. Let $\mathcal{B}_{k}(X, Y)$ be the bipartite graph with one part Y and the other part the components of $G[X]$. Put an edge between $y \in Y$ and a component T of $G[X]$ iff $N(y) \cap W^{k}(T) \neq \emptyset$.

Lemma 3.9

For a graph G, let $\{X, Y\}$ be a partition of $V(G)$ and $k \geq 4$. Let $\mathcal{B}_{k}(X, Y)$ be the bipartite graph with one part Y and the other part the components of $G[X]$. Put an edge between $y \in Y$ and a component T of $G[X]$ iff $N(y) \cap W^{k}(T) \neq \emptyset$.

Lemma 3.9

Let $k \geq 7$ and let G be a graph with $Y \subseteq V(G)$ such that:
(1) $K_{k} \nsubseteq G$; and
(2) the components of $G-Y$ are in \mathcal{T}_{k}; and
(3) $d_{G}(v) \leq k-1$ for all $v \in V(G-Y)$; and
(9) with $\mathcal{B}:=\mathcal{B}_{k}(V(G-Y), Y)$ we have $\delta(\mathcal{B}) \geq 3$.

Then G has an induced subgraph G^{\prime} that is f-AT where $f(y)=d_{G^{\prime}}(y)-1$ for $y \in Y$ and $f(v)=d_{G^{\prime}}(v)$ for all $v \in V\left(G^{\prime}-Y\right)$.

Theorem 4.4

$$
\begin{gathered}
\alpha_{k}:=\frac{1}{2}-\frac{1}{(k-1)(k-2)} \\
g_{k}(n, c):=\left(k-1+\frac{k-3}{(k-c)(k-1)+k-3}\right) n
\end{gathered}
$$

Theorem 4.4

If G is an AT-irreducible graph with $\delta(G) \geq 4$ and $\omega(G) \leq \delta(G)$, then $2\|G\| \geq g_{\delta(G)+1}(|G|, c)$ where $c:=(\delta(G)-2) \alpha_{\delta(G)+1}$ when $\delta(G) \geq 6$ and $c:=(\delta(G)-3) \alpha_{\delta(G)+1}$ when $\delta(G) \in\{4,5\}$.

Corollaries

Corollary 5.1

For $k \geq 5$ and $G \neq K_{k}$ a k-list-critical graph, we have $2\|G\| \geq g_{k}(|G|, c)$ where $c:=(k-3) \alpha_{k}$ when $k \geq 7$ and $c:=(k-4) \alpha_{k}$ when $k \in\{5,6\}$.

Corollaries

Corollary 5.1

For $k \geq 5$ and $G \neq K_{k}$ a k-list-critical graph, we have $2\|G\| \geq g_{k}(|G|, c)$ where $c:=(k-3) \alpha_{k}$ when $k \geq 7$ and $c:=(k-4) \alpha_{k}$ when $k \in\{5,6\}$.

Corollary 5.2

For $k \geq 5$ and $G \neq K_{k}$ an online k-list-critical graph, we have $2\|G\| \geq g_{k}(|G|, c)$ where $c:=(k-3) \alpha_{k}$ when $k \geq 7$ and $c:=(k-4) \alpha_{k}$ when $k \in\{5,6\}$.

Corollaries

Corollary 5.1

For $k \geq 5$ and $G \neq K_{k}$ a k-list-critical graph, we have $2\|G\| \geq g_{k}(|G|, c)$ where $c:=(k-3) \alpha_{k}$ when $k \geq 7$ and $c:=(k-4) \alpha_{k}$ when $k \in\{5,6\}$.

Corollary 5.2

For $k \geq 5$ and $G \neq K_{k}$ an online k-list-critical graph, we have $2\|G\| \geq g_{k}(|G|, c)$ where $c:=(k-3) \alpha_{k}$ when $k \geq 7$ and $c:=(k-4) \alpha_{k}$ when $k \in\{5,6\}$.

Corollary 5.3

For $k \geq 5$ and $G \neq K_{k}$ a k-AT-critical graph, we have $2\|G\| \geq g_{k}(|G|, c)$ where $c:=(k-3) \alpha_{k}$ when $k \geq 7$ and $c:=(k-4) \alpha_{k}$ when $k \in\{5,6\}$.

