On constructive methods in the theory of colour-critical graphs

Filip Konieczny
Based on Horst Sachs, Michael Stiebitz (1989).
On constructive methods in the theory of colour-critical graphs
May 18, 2023

Colorability

Graph $G=(V, E)$ is k-colourable if there is $c: V \rightarrow\{1,2, \ldots, k\}$ such that for every $e \in E|c(e)|>1$ (i.e. there is no monochromatic edge).

Colorability

Graph $G=(V, E)$ is k-colourable if there is $c: V \rightarrow\{1,2, \ldots, k\}$ such that for every $e \in E|c(e)|>1$ (i.e. there is no monochromatic edge).

Chromatic number

For graph G, chromatic number $\chi(G)$ is minimal k such that G is k-colourable.

Colorability

Graph $G=(V, E)$ is k-colourable if there is $c: V \rightarrow\{1,2, \ldots, k\}$ such that for every $e \in E|c(e)|>1$ (i.e. there is no monochromatic edge).

Chromatic number

For graph G, chromatic number $\chi(G)$ is minimal k such that G is k-colourable.

k-critical graph

Graph G is k-critical if $\chi(G)=k$ and for every proper subgraph H of G $\chi(H)<k$.

Colorability

Graph $G=(V, E)$ is k-colourable if there is $c: V \rightarrow\{1,2, \ldots, k\}$ such that for every $e \in E|c(e)|>1$ (i.e. there is no monochromatic edge).

Chromatic number

For graph G, chromatic number $\chi(G)$ is minimal k such that G is k-colourable.

k-critical graph

Graph G is k-critical if $\chi(G)=k$ and for every proper subgraph H of G $\chi(H)<k$.

Examples

Odd cycles, K_{n} but also:

Basic properties

(1) $\delta(G) \geq k-1$.

Basic properties

(1) $\delta(G) \geq k-1$.
(2) If Q is clique in G and $Q \neq G$, then $G-Q$ is connected. In particular, G does not have cut-vertex.

Basic properties

(1) $\delta(G) \geq k-1$.
(2) If Q is clique in G and $Q \neq G$, then $G-Q$ is connected. In particular, G does not have cut-vertex.

Constructions

Dirac's construction

Given G_{1}, G_{2} let G be graph $G_{1} \cup G_{2}$ with additional edges between every pair of vertices from G_{1} and G_{2}. Then
(1) $\chi(G)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.

Dirac's construction

Given G_{1}, G_{2} let G be graph $G_{1} \cup G_{2}$ with additional edges between every pair of vertices from G_{1} and G_{2}. Then
(1) $\chi(G)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.
(2) If G_{1} is k_{1}-critical and G_{2} is k_{2}-critical, then G is $\left(k_{1}+k_{2}\right)$-critical.

Dirac's construction

Given G_{1}, G_{2} let G be graph $G_{1} \cup G_{2}$ with additional edges between every pair of vertices from G_{1} and G_{2}. Then
(1) $\chi(G)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.
(2) If G_{1} is k_{1}-critical and G_{2} is k_{2}-critical, then G is $\left(k_{1}+k_{2}\right)$-critical.

Corollary

There are k-critical graphs with $f(k)|V|^{2}$ edges.

k-1
k
$3 k$-critical

Dirac-Hajós' construction

Let G_{1}, G_{2} be k-critical graphs and $\left\{x_{i}, y_{i}\right\}$ be edges in these graphs. Let G be given by sum of G_{1} and G_{2} where x_{1}, x_{2} are identified, edges $\left\{x_{i}, y_{i}\right\}$ are removed and edge $\left\{y_{1}, y_{2}\right\}$ is added. Then G is k-critical.

y_{1}

y_{2}

Hajós theorem

Every k-critical graph is obtained this way from two smaller k-critical graphs or by identifing two non-adjacent vertices in k-critical graph.

Instead for single vertex x_{1} we can have whole clique.

Generalization

Let q be positive integer, and G_{1}, G_{2} be containing vertices $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}, y_{i}\right\}$ for $i \in\{1,2\}$ and
(1) $\left\{x_{i}^{1}, y_{i}\right\}$ is an edge in G_{i},

Instead for single vertex x_{1} we can have whole clique.

Generalization

Let q be positive integer, and G_{1}, G_{2} be containing vertices $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}, y_{i}\right\}$ for $i \in\{1,2\}$ and
(1) $\left\{x_{i}^{1}, y_{i}\right\}$ is an edge in G_{i},
(2) $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ is clique in G_{i},

Instead for single vertex x_{1} we can have whole clique.

Generalization

Let q be positive integer, and G_{1}, G_{2} be containing vertices $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}, y_{i}\right\}$ for $i \in\{1,2\}$ and
(1) $\left\{x_{i}^{1}, y_{i}\right\}$ is an edge in G_{i},
(2) $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ is clique in G_{i},
(3) $\left\{x_{1}^{j}, y_{1}\right\}$ is edge of G_{1} or $\left\{x_{2}^{j}, y_{2}\right\}$ is edge of G_{2} for $j \geq 2$.

Instead for single vertex x_{1} we can have whole clique.

Generalization

Let q be positive integer, and G_{1}, G_{2} be containing vertices $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}, y_{i}\right\}$ for $i \in\{1,2\}$ and
(1) $\left\{x_{i}^{1}, y_{i}\right\}$ is an edge in G_{i},
(2) $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ is clique in G_{i},
(3) $\left\{x_{1}^{j}, y_{1}\right\}$ is edge of G_{1} or $\left\{x_{2}^{j}, y_{2}\right\}$ is edge of G_{2} for $j \geq 2$.

Let G be constructed in following way:
(1) Delete edges $\left\{x_{i}^{1}, y_{i}\right\}$,

Instead for single vertex x_{1} we can have whole clique.

Generalization

Let q be positive integer, and G_{1}, G_{2} be containing vertices $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}, y_{i}\right\}$ for $i \in\{1,2\}$ and
(1) $\left\{x_{i}^{1}, y_{i}\right\}$ is an edge in G_{i},
(2) $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ is clique in G_{i},
(3) $\left\{x_{1}^{j}, y_{1}\right\}$ is edge of G_{1} or $\left\{x_{2}^{j}, y_{2}\right\}$ is edge of G_{2} for $j \geq 2$.

Let G be constructed in following way:
(1) Delete edges $\left\{x_{i}^{1}, y_{i}\right\}$,
(2) Identify x_{1}^{i} with x_{2}^{i} for $i \in\{1,2, \ldots, q\}$,

Instead for single vertex x_{1} we can have whole clique.

Generalization

Let q be positive integer, and G_{1}, G_{2} be containing vertices $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}, y_{i}\right\}$ for $i \in\{1,2\}$ and
(1) $\left\{x_{i}^{1}, y_{i}\right\}$ is an edge in G_{i},
(2) $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ is clique in G_{i},
(3) $\left\{x_{1}^{j}, y_{1}\right\}$ is edge of G_{1} or $\left\{x_{2}^{j}, y_{2}\right\}$ is edge of G_{2} for $j \geq 2$.

Let G be constructed in following way:
(1) Delete edges $\left\{x_{i}^{1}, y_{i}\right\}$,
(2) Identify x_{1}^{i} with x_{2}^{i} for $i \in\{1,2, \ldots, q\}$,
(3) Add edge $\left\{y_{1}, y_{2}\right\}$.

Instead for single vertex x_{1} we can have whole clique.

Generalization

Let q be positive integer, and G_{1}, G_{2} be containing vertices $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}, y_{i}\right\}$ for $i \in\{1,2\}$ and
(1) $\left\{x_{i}^{1}, y_{i}\right\}$ is an edge in G_{i},
(2) $\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ is clique in G_{i},
(3) $\left\{x_{1}^{j}, y_{1}\right\}$ is edge of G_{1} or $\left\{x_{2}^{j}, y_{2}\right\}$ is edge of G_{2} for $j \geq 2$.

Let G be constructed in following way:
(1) Delete edges $\left\{x_{i}^{1}, y_{i}\right\}$,
(2) Identify x_{1}^{i} with x_{2}^{i} for $i \in\{1,2, \ldots, q\}$,
(3) Add edge $\left\{y_{1}, y_{2}\right\}$.

If G_{1}, G_{2} is k-critical then G is also k-critical.

Further generalization

Let $k \geq 4,1 \leq p \leq q \leq k-1-p$. Let $G_{1}, G_{2}, \ldots, G_{p}$ be k-critical graphs which satisfy, for every $1 \leq i \leq p+1$:
(1) There is a clique $Q_{i}=\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ in G_{i},

Further generalization

Let $k \geq 4,1 \leq p \leq q \leq k-1-p$. Let $G_{1}, G_{2}, \ldots, G_{p}$ be k-critical graphs which satisfy, for every $1 \leq i \leq p+1$:
(1) There is a clique $Q_{i}=\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ in G_{i},
(2) There is a set of vertices R_{i} in $G_{i},\left|R_{i}\right|=r_{i} \geq 1, R_{i} \cap Q_{i}=\emptyset$ and for every pair of vertices $r \in R_{i}, q \in Q_{i}$ where is an edge $\{r, q\}$ in G_{i},

Further generalization

Let $k \geq 4,1 \leq p \leq q \leq k-1-p$. Let $G_{1}, G_{2}, \ldots, G_{p}$ be k-critical graphs which satisfy, for every $1 \leq i \leq p+1$:
(1) There is a clique $Q_{i}=\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ in G_{i},
(2) There is a set of vertices R_{i} in $G_{i},\left|R_{i}\right|=r_{i} \geq 1, R_{i} \cap Q_{i}=\emptyset$ and for every pair of vertices $r \in R_{i}, q \in Q_{i}$ where is an edge $\{r, q\}$ in G_{i},
(3) $r_{1}+r_{2}+\ldots+r_{p+1} \leq k-q$.

Further generalization

Let $k \geq 4,1 \leq p \leq q \leq k-1-p$. Let $G_{1}, G_{2}, \ldots, G_{p}$ be k-critical graphs which satisfy, for every $1 \leq i \leq p+1$:
(1) There is a clique $Q_{i}=\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ in G_{i},
(2) There is a set of vertices R_{i} in $G_{i},\left|R_{i}\right|=r_{i} \geq 1, R_{i} \cap Q_{i}=\emptyset$ and for every pair of vertices $r \in R_{i}, q \in Q_{i}$ where is an edge $\{r, q\}$ in G_{i},
(3) $r_{1}+r_{2}+\ldots+r_{p+1} \leq k-q$.

Construct G in the following way:

Further generalization

Let $k \geq 4,1 \leq p \leq q \leq k-1-p$. Let $G_{1}, G_{2}, \ldots, G_{p}$ be k-critical graphs which satisfy, for every $1 \leq i \leq p+1$:
(1) There is a clique $Q_{i}=\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ in G_{i},
(2) There is a set of vertices R_{i} in $G_{i},\left|R_{i}\right|=r_{i} \geq 1, R_{i} \cap Q_{i}=\emptyset$ and for every pair of vertices $r \in R_{i}, q \in Q_{i}$ where is an edge $\{r, q\}$ in G_{i},
(3) $r_{1}+r_{2}+\ldots+r_{p+1} \leq k-q$.

Construct G in the following way:
(1) Delete all the edges between Q_{i} and R_{i},

Further generalization

Let $k \geq 4,1 \leq p \leq q \leq k-1-p$. Let $G_{1}, G_{2}, \ldots, G_{p}$ be k-critical graphs which satisfy, for every $1 \leq i \leq p+1$:
(1) There is a clique $Q_{i}=\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ in G_{i},
(2) There is a set of vertices R_{i} in $G_{i},\left|R_{i}\right|=r_{i} \geq 1, R_{i} \cap Q_{i}=\emptyset$ and for every pair of vertices $r \in R_{i}, q \in Q_{i}$ where is an edge $\{r, q\}$ in G_{i},
(3) $r_{1}+r_{2}+\ldots+r_{p+1} \leq k-q$.

Construct G in the following way:
(1) Delete all the edges between Q_{i} and R_{i},
(2) Identify all Q_{i} cliques,

Further generalization

Let $k \geq 4,1 \leq p \leq q \leq k-1-p$. Let $G_{1}, G_{2}, \ldots, G_{p}$ be k-critical graphs which satisfy, for every $1 \leq i \leq p+1$:
(1) There is a clique $Q_{i}=\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ in G_{i},
(2) There is a set of vertices R_{i} in $G_{i},\left|R_{i}\right|=r_{i} \geq 1, R_{i} \cap Q_{i}=\emptyset$ and for every pair of vertices $r \in R_{i}, q \in Q_{i}$ where is an edge $\{r, q\}$ in G_{i},
(3) $r_{1}+r_{2}+\ldots+r_{p+1} \leq k-q$.

Construct G in the following way:
(1) Delete all the edges between Q_{i} and R_{i},
(2) Identify all Q_{i} cliques,
(3) For $1 \leq i<j \leq p+1$ join every vertex from R_{i} with every vertex from R_{j}.

Further generalization

Let $k \geq 4,1 \leq p \leq q \leq k-1-p$. Let $G_{1}, G_{2}, \ldots, G_{p}$ be k-critical graphs which satisfy, for every $1 \leq i \leq p+1$:
(1) There is a clique $Q_{i}=\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{q}\right\}$ in G_{i},
(2) There is a set of vertices R_{i} in $G_{i},\left|R_{i}\right|=r_{i} \geq 1, R_{i} \cap Q_{i}=\emptyset$ and for every pair of vertices $r \in R_{i}, q \in Q_{i}$ where is an edge $\{r, q\}$ in G_{i},
(3) $r_{1}+r_{2}+\ldots+r_{p+1} \leq k-q$.

Construct G in the following way:
(1) Delete all the edges between Q_{i} and R_{i},
(2) Identify all Q_{i} cliques,
(3) For $1 \leq i<j \leq p+1$ join every vertex from R_{i} with every vertex from R_{j}.
Resulting graph G is k-critical.

Low veritices

In k-critical graph $v \in V$ is low vertex if $\operatorname{deg}(v)=k-1$.

Low veritices

In k-critical graph $v \in V$ is low vertex if $\operatorname{deg}(v)=k-1$.

Gallai tree

Graphs where every maximal 2-connected component is odd cycle or clique is called Gallai forest. If every vertex in Gallai forest has degree at most $k-1$ then it is k-Gallai-forest.

Low veritices

In k-critical graph $v \in V$ is low vertex if $\operatorname{deg}(v)=k-1$.

Gallai tree

Graphs where every maximal 2-connected component is odd cycle or clique is called Gallai forest. If every vertex in Gallai forest has degree at most $k-1$ then it is k-Gallai-forest.

Gallai theorem

In k-critical graph, subgraph induced by low vertices is k-Gallai-forest.

Low veritices

In k-critical graph $v \in V$ is low vertex if $\operatorname{deg}(v)=k-1$.

Gallai tree

Graphs where every maximal 2-connected component is odd cycle or clique is called Gallai forest. If every vertex in Gallai forest has degree at most $k-1$ then it is k-Gallai-forest.

Gallai theorem

In k-critical graph, subgraph induced by low vertices is k-Gallai-forest.

Reverse theorem

Every k-Gallai-forest without K_{k} as component is subgraph induced by low vertices of some k-critical graph.

Source: Cranston, Daniel \& Rabern, Landon. (2014). Brooks' Theorem and Beyond. Journal of Graph Theory. 80. 10.1002/jgt.21847.

Mycielski construction

Let $X_{i}=\left\{x_{1}^{i}, x_{2}^{i} \ldots x_{n}^{i}\right\} i \in\{1,2 \ldots r\}$ be r copies of vertices of G. Let $M_{r}(G)$ be graph with $V\left(M_{r}(G)\right)=\{z\} \cup \bigcup X_{i}$ be graph with edges:
(1) $\left\{x_{i}^{1}, x_{j}^{1}\right\}$ if $\left\{v_{i}, v_{j}\right\}$ is edge in G,

Mycielski construction

Let $X_{i}=\left\{x_{1}^{i}, x_{2}^{i} \ldots x_{n}^{i}\right\} i \in\{1,2 \ldots r\}$ be r copies of vertices of G. Let $M_{r}(G)$ be graph with $V\left(M_{r}(G)\right)=\{z\} \cup \bigcup X_{i}$ be graph with edges:
(1) $\left\{x_{i}^{1}, x_{j}^{1}\right\}$ if $\left\{v_{i}, v_{j}\right\}$ is edge in G,
(2) $\left\{x_{i}^{s}, x_{j}^{s+1}\right\}$ if $\left\{v_{i}, v_{j}\right\}$ is edge in G,

Mycielski construction

Let $X_{i}=\left\{x_{1}^{i}, x_{2}^{i} \ldots x_{n}^{i}\right\} i \in\{1,2 \ldots r\}$ be r copies of vertices of G. Let $M_{r}(G)$ be graph with $V\left(M_{r}(G)\right)=\{z\} \cup \bigcup X_{i}$ be graph with edges:
(1) $\left\{x_{i}^{1}, x_{j}^{1}\right\}$ if $\left\{v_{i}, v_{j}\right\}$ is edge in G,
(2) $\left\{x_{i}^{s}, x_{j}^{s+1}\right\}$ if $\left\{v_{i}, v_{j}\right\}$ is edge in G,
(3) $\left\{z, x_{i}^{r}\right\}$ for every $i \in\{1,2, \ldots, n\}$.

Theorem

If $k \geq 2$ and $\chi(G)=k$ then $\chi\left(M_{2}(G)\right)=k+1$.

Theorem

If $k \geq 2$ and G is k-critical then $M_{2}(G)$ is $(k+1)$-critical.

Theorem

$M_{r}\left(K_{k}\right)$ is $(k+1)$-critical for every $r \geq 1$. As corollary, there are k-critical graphs which can be made bipartite by removing only $\binom{k}{2}$ edges. This result is proved optimal (Tuza, Rodl 1985).

In general it is not true that $\chi\left(M_{r}(G)\right)=\chi(G)+1$. However if $M(k+1)=\left\{M_{r}(G) \mid G \in M(k), r \geq 1\right\}$ for $k>3$ and $M(2)$ are odd cycles, then $M(k)$ are k-critical.

Using Dirac's construction we can get k-critical graphs without low vertices for $k \geq 6$.

Using Dirac's construction we can get k-critical graphs without low vertices for $k \geq 6$. In 1963 Gallai found infinite family of 4-critical, 4-regular, non-planar graphs, however, embeddable in the Klein bottle.

Using Dirac's construction we can get k-critical graphs without low vertices for $k \geq 6$. In 1963 Gallai found infinite family of 4-critical, 4-regular, non-planar graphs, however, embeddable in the Klein bottle. A planar 4-critical and 4-regular graph was given by Koester in 1985.

Thank you for your attention!

