On constructive methods in the theory of colour-critical graphs

Filip Konieczny

Based on Horst Sachs, Michael Stiebitz (1989). On constructive methods in the theory of colour-critical graphs

May 18, 2023

Graph G = (V, E) is *k*-colourable if there is $c : V \to \{1, 2, ..., k\}$ such that for every $e \in E|c(e)| > 1$ (i.e. there is no monochromatic edge).

э

イロト 不得 トイヨト イヨト

Graph G = (V, E) is *k*-colourable if there is $c : V \to \{1, 2, ..., k\}$ such that for every $e \in E|c(e)| > 1$ (i.e. there is no monochromatic edge).

Chromatic number

For graph G, chromatic number $\chi(G)$ is minimal k such that G is k-colourable.

< 回 > < 三 > < 三 > -

Graph G = (V, E) is *k*-colourable if there is $c : V \to \{1, 2, ..., k\}$ such that for every $e \in E|c(e)| > 1$ (i.e. there is no monochromatic edge).

Chromatic number

For graph G, chromatic number $\chi(G)$ is minimal k such that G is k-colourable.

k-critical graph

Graph G is k-critical if $\chi(G) = k$ and for every proper subgraph H of G $\chi(H) < k$.

12

く 目 ト く ヨ ト く ヨ ト

Graph G = (V, E) is *k*-colourable if there is $c : V \to \{1, 2, ..., k\}$ such that for every $e \in E|c(e)| > 1$ (i.e. there is no monochromatic edge).

Chromatic number

For graph G, chromatic number $\chi(G)$ is minimal k such that G is k-colourable.

k-critical graph

Graph G is k-critical if $\chi(G) = k$ and for every proper subgraph H of G $\chi(H) < k$.

Examples

Odd cycles, K_n but also:

2

イロト イヨト イヨト イヨト

Basic properties

$$(G) \geq k-1.$$

Filip Konieczny

Ξ.

イロト イヨト イヨト イヨト

Basic properties

$$(G) \geq k-1.$$

2 If Q is clique in G and $Q \neq G$, then G - Q is connected. In particular, G does not have cut-vertex.

э

イロト 不得 トイヨト イヨト

Basic properties

$$(G) \geq k-1.$$

2 If Q is clique in G and $Q \neq G$, then G - Q is connected. In particular, G does not have cut-vertex.

< A > <

э

Constructions

< ∃⇒

æ

Dirac's construction

Given G_1, G_2 let G be graph $G_1 \cup G_2$ with additional edges between every pair of vertices from G_1 and G_2 . Then

1
$$\chi(G) = \chi(G_1) + \chi(G_2).$$

э

イロト 不得 トイヨト イヨト

Dirac's construction

Given G_1, G_2 let G be graph $G_1 \cup G_2$ with additional edges between every pair of vertices from G_1 and G_2 . Then

$$(G) = \chi(G_1) + \chi(G_2).$$

2 If G_1 is k_1 -critical and G_2 is k_2 -critical, then G is $(k_1 + k_2)$ -critical.

Dirac's construction

Given G_1, G_2 let G be graph $G_1 \cup G_2$ with additional edges between every pair of vertices from G_1 and G_2 . Then

$$(G) = \chi(G_1) + \chi(G_2).$$

2 If G_1 is k_1 -critical and G_2 is k_2 -critical, then G is $(k_1 + k_2)$ -critical.

Corollary

There are k-critical graphs with $f(k)|V|^2$ edges.

く 何 ト く ヨ ト く ヨ ト

▲□▶▲□▶▲□▶▲□▶ □□ のへの

Dirac-Hajós' construction

Let G_1, G_2 be k-critical graphs and $\{x_i, y_i\}$ be edges in these graphs. Let G be given by sum of G_1 and G_2 where x_1, x_2 are identified, edges $\{x_i, y_i\}$ are removed and edge $\{y_1, y_2\}$ is added. Then G is k-critical.

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○

・ロ・・雪・・雨・・雨・

Hajós theorem

Every k-critical graph is obtained this way from two smaller k-critical graphs or by identifing two non-adjacent vertices in k-critical graph.

Generalization

Let q be positive integer, and $G_1,\,G_2$ be containing vertices $\{x_i^1,x_i^2,\ldots,x_i^q,y_i\}$ for $i\in\{1,2\}$ and

• $\{x_i^1, y_i\}$ is an edge in G_i ,

Generalization

Let q be positive integer, and G_1,G_2 be containing vertices $\{x_i^1,x_i^2,\ldots,x_i^q,y_i\}$ for $i\in\{1,2\}$ and

- $\{x_i^1, y_i\}$ is an edge in G_i ,
- 2 $\{x_i^1, x_i^2, \dots, x_i^q\}$ is clique in G_i ,

Generalization

Let q be positive integer, and G_1, G_2 be containing vertices $\{x_i^1, x_i^2, \dots, x_i^q, y_i\}$ for $i \in \{1, 2\}$ and

- 2 $\{x_i^1, x_i^2, \dots, x_i^q\}$ is clique in G_i ,
- $\{x_1^j, y_1\}$ is edge of G_1 or $\{x_2^j, y_2\}$ is edge of G_2 for $j \ge 2$.

Generalization

Let q be positive integer, and G_1, G_2 be containing vertices $\{x_i^1, x_i^2, \dots, x_i^q, y_i\}$ for $i \in \{1, 2\}$ and

- $(\mathbf{2} \ \{x_i^1, x_i^2, \dots, x_i^q\} \text{ is clique in } G_i,$
- $\{x_1^j, y_1\}$ is edge of G_1 or $\{x_2^j, y_2\}$ is edge of G_2 for $j \ge 2$.

Let G be constructed in following way:

1 Delete edges $\{x_i^1, y_i\}$,

Generalization

Let q be positive integer, and G_1, G_2 be containing vertices $\{x_i^1, x_i^2, \dots, x_i^q, y_i\}$ for $i \in \{1, 2\}$ and

- $(\mathbf{2} \ \{x_i^1, x_i^2, \dots, x_i^q\} \text{ is clique in } G_i,$
- $\{x_1^j, y_1\}$ is edge of G_1 or $\{x_2^j, y_2\}$ is edge of G_2 for $j \ge 2$.

Let G be constructed in following way:

- **1** Delete edges $\{x_i^1, y_i\}$,
- 2 Identify x_1^i with x_2^i for $i \in \{1, 2, \ldots, q\}$,

Generalization

Let q be positive integer, and G_1, G_2 be containing vertices $\{x_i^1, x_i^2, \dots, x_i^q, y_i\}$ for $i \in \{1, 2\}$ and

- $(\mathbf{2} \ \{x_i^1, x_i^2, \dots, x_i^q\} \text{ is clique in } G_i,$
- $\{x_1^j, y_1\}$ is edge of G_1 or $\{x_2^j, y_2\}$ is edge of G_2 for $j \ge 2$.

Let G be constructed in following way:

- **1** Delete edges $\{x_i^1, y_i\}$,
- 2 Identify x_1^i with x_2^i for $i \in \{1, 2, \dots, q\}$,
- **3** Add edge $\{y_1, y_2\}$.

Generalization

Let q be positive integer, and G_1, G_2 be containing vertices $\{x_i^1, x_i^2, \dots, x_i^q, y_i\}$ for $i \in \{1, 2\}$ and

- $(\mathbf{z}_i^1, x_i^2, \dots, x_i^q)$ is clique in G_i ,
- $\{x_1^j, y_1\}$ is edge of G_1 or $\{x_2^j, y_2\}$ is edge of G_2 for $j \ge 2$.

Let G be constructed in following way:

- **1** Delete edges $\{x_i^1, y_i\}$,
- 2 Identify x_1^i with x_2^i for $i \in \{1, 2, \dots, q\}$,
- 3 Add edge $\{y_1, y_2\}$.

If G_1 , G_2 is k-critical then G is also k-critical.

Let $k \ge 4, 1 \le p \le q \le k - 1 - p$. Let G_1, G_2, \ldots, G_p be k-critical graphs which satisfy, for every $1 \le i \le p + 1$:

1 There is a clique $Q_i = \{x_i^1, x_i^2, ..., x_i^q\}$ in G_i ,

э

Let $k \ge 4, 1 \le p \le q \le k - 1 - p$. Let G_1, G_2, \ldots, G_p be k-critical graphs which satisfy, for every $1 \le i \le p + 1$:

- There is a clique $Q_i = \{x_i^1, x_i^2, \dots, x_i^q\}$ in G_i ,
- ② There is a set of vertices R_i in G_i , $|R_i| = r_i \ge 1$, $R_i \cap Q_i = \emptyset$ and for every pair of vertices $r \in R_i$, $q \in Q_i$ where is an edge $\{r, q\}$ in G_i ,

Let $k \ge 4, 1 \le p \le q \le k - 1 - p$. Let G_1, G_2, \ldots, G_p be k-critical graphs which satisfy, for every $1 \le i \le p + 1$:

- There is a clique $Q_i = \{x_i^1, x_i^2, \dots, x_i^q\}$ in G_i ,
- ② There is a set of vertices R_i in G_i , $|R_i| = r_i \ge 1$, $R_i \cap Q_i = \emptyset$ and for every pair of vertices $r \in R_i$, $q \in Q_i$ where is an edge $\{r, q\}$ in G_i ,

3
$$r_1 + r_2 + \ldots + r_{p+1} \leq k - q$$

Let $k \ge 4, 1 \le p \le q \le k - 1 - p$. Let G_1, G_2, \ldots, G_p be k-critical graphs which satisfy, for every $1 \le i \le p + 1$:

- There is a clique $Q_i = \{x_i^1, x_i^2, \dots, x_i^q\}$ in G_i ,
- ② There is a set of vertices R_i in G_i , $|R_i| = r_i \ge 1$, $R_i \cap Q_i = \emptyset$ and for every pair of vertices $r \in R_i$, $q \in Q_i$ where is an edge $\{r, q\}$ in G_i ,

3
$$r_1 + r_2 + \ldots + r_{p+1} \leq k - q$$

Construct G in the following way:

Let $k \ge 4, 1 \le p \le q \le k - 1 - p$. Let G_1, G_2, \ldots, G_p be k-critical graphs which satisfy, for every $1 \le i \le p + 1$:

- There is a clique $Q_i = \{x_i^1, x_i^2, \dots, x_i^q\}$ in G_i ,
- ② There is a set of vertices R_i in G_i , $|R_i| = r_i \ge 1$, $R_i \cap Q_i = \emptyset$ and for every pair of vertices $r \in R_i$, $q \in Q_i$ where is an edge $\{r, q\}$ in G_i ,

$$I r_1 + r_2 + \ldots + r_{p+1} \le k - q$$

Construct G in the following way:

1 Delete all the edges between Q_i and R_i ,

Let $k \ge 4, 1 \le p \le q \le k - 1 - p$. Let G_1, G_2, \ldots, G_p be k-critical graphs which satisfy, for every $1 \le i \le p + 1$:

- There is a clique $Q_i = \{x_i^1, x_i^2, \dots, x_i^q\}$ in G_i ,
- ② There is a set of vertices R_i in G_i , $|R_i| = r_i \ge 1$, $R_i \cap Q_i = \emptyset$ and for every pair of vertices $r \in R_i$, $q \in Q_i$ where is an edge $\{r, q\}$ in G_i ,

$$I r_1 + r_2 + \ldots + r_{p+1} \le k - q$$

Construct G in the following way:

- **1** Delete all the edges between Q_i and R_i ,
- 2 Identify all Q_i cliques,

Let $k \ge 4, 1 \le p \le q \le k - 1 - p$. Let G_1, G_2, \ldots, G_p be k-critical graphs which satisfy, for every $1 \le i \le p + 1$:

- There is a clique $Q_i = \{x_i^1, x_i^2, \dots, x_i^q\}$ in G_i ,
- ② There is a set of vertices R_i in G_i , $|R_i| = r_i \ge 1$, $R_i \cap Q_i = \emptyset$ and for every pair of vertices $r \in R_i$, $q \in Q_i$ where is an edge $\{r, q\}$ in G_i ,

$$1 r_1 + r_2 + \ldots + r_{p+1} \le k - q_2$$

Construct G in the following way:

- **1** Delete all the edges between Q_i and R_i ,
- 2 Identify all Q_i cliques,
- So For 1 ≤ i < j ≤ p + 1 join every vertex from R_i with every vertex from R_j.

イロト イヨト イヨト ・

Let $k \ge 4, 1 \le p \le q \le k - 1 - p$. Let G_1, G_2, \ldots, G_p be k-critical graphs which satisfy, for every $1 \le i \le p + 1$:

- There is a clique $Q_i = \{x_i^1, x_i^2, \dots, x_i^q\}$ in G_i ,
- ② There is a set of vertices R_i in G_i , $|R_i| = r_i \ge 1$, $R_i \cap Q_i = \emptyset$ and for every pair of vertices $r \in R_i$, $q \in Q_i$ where is an edge $\{r, q\}$ in G_i ,

$$1 r_1 + r_2 + \ldots + r_{p+1} \le k - q.$$

Construct G in the following way:

- **1** Delete all the edges between Q_i and R_i ,
- 2 Identify all Q_i cliques,
- So For 1 ≤ i < j ≤ p + 1 join every vertex from R_i with every vertex from R_j.

Resulting graph G is k-critical.

イロト イ理ト イヨト イヨト

Filip Konieczny

In k-critical graph $v \in V$ is low vertex if deg(v) = k - 1.

イロト 不得 トイヨト イヨト

3

In k-critical graph $v \in V$ is low vertex if deg(v) = k - 1.

Gallai tree

Graphs where every maximal 2-connected component is odd cycle or clique is called *Gallai forest*. If every vertex in Gallai forest has degree at most k - 1 then it is k-Gallai-forest.

In k-critical graph $v \in V$ is low vertex if deg(v) = k - 1.

Gallai tree

Graphs where every maximal 2-connected component is odd cycle or clique is called *Gallai forest*. If every vertex in Gallai forest has degree at most k - 1 then it is k-Gallai-forest.

Gallai theorem

In k-critical graph, subgraph induced by low vertices is k-Gallai-forest.

In k-critical graph $v \in V$ is low vertex if deg(v) = k - 1.

Gallai tree

Graphs where every maximal 2-connected component is odd cycle or clique is called *Gallai forest*. If every vertex in Gallai forest has degree at most k - 1 then it is k-Gallai-forest.

Gallai theorem

In k-critical graph, subgraph induced by low vertices is k-Gallai-forest.

Reverse theorem

Every k-Gallai-forest without K_k as component is subgraph induced by low vertices of some k-critical graph.

2

Source: Cranston, Daniel & Rabern, Landon. (2014). Brooks' Theorem and Beyond. Journal of Graph Theory. 80. 10.1002/jgt.21847.

Mycielski construction

Let $X_i = \{x_1^i, x_2^i \dots x_n^i\}$ $i \in \{1, 2 \dots r\}$ be r copies of vertices of G. Let $M_r(G)$ be graph with $V(M_r(G)) = \{z\} \cup \bigcup X_i$ be graph with edges: **1** $\{x_i^1, x_j^1\}$ if $\{v_i, v_j\}$ is edge in G,

Mycielski construction

Let $X_i = \{x_1^i, x_2^i \dots x_n^i\}$ $i \in \{1, 2 \dots r\}$ be r copies of vertices of G. Let $M_r(G)$ be graph with $V(M_r(G)) = \{z\} \cup \bigcup X_i$ be graph with edges:

- $\{x_i^1, x_i^1\}$ if $\{v_i, v_j\}$ is edge in *G*,
- 2 $\{x_i^s, x_i^{s+1}\}$ if $\{v_i, v_j\}$ is edge in G,

Mycielski construction

Let $X_i = \{x_1^i, x_2^i \dots x_n^i\} \ i \in \{1, 2 \dots r\}$ be r copies of vertices of G. Let $M_r(G)$ be graph with $V(M_r(G)) = \{z\} \cup \bigcup X_i$ be graph with edges:

1
$$\{x_i^1, x_j^1\}$$
 if $\{v_i, v_j\}$ is edge in G_i

2
$$\{x_i^s, x_i^{s+1}\}$$
 if $\{v_i, v_j\}$ is edge in G ,

③ {
$$z, x_i^r$$
} for every *i* ∈ {1, 2, ..., *n*}.

< 17 > <

Theorem

If $k \geq 2$ and $\chi(G) = k$ then $\chi(M_2(G)) = k + 1$.

Theorem

If $k \ge 2$ and G is k-critical then $M_2(G)$ is (k + 1)-critical.

Theorem

 $M_r(K_k)$ is (k + 1)-critical for every $r \ge 1$. As corollary, there are k-critical graphs which can be made bipartite by removing only $\binom{k}{2}$ edges. This result is proved optimal (Tuza, Rodl 1985).

In general it is not true that $\chi(M_r(G)) = \chi(G) + 1$. However if $M(k+1) = \{M_r(G) \mid G \in M(k), r \ge 1\}$ for k > 3 and M(2) are odd cycles, then M(k) are k-critical.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Using Dirac's construction we can get k-critical graphs without low vertices for $k \ge 6$.

∃ ► < ∃ ►

< 47 ▶

э

Using Dirac's construction we can get k-critical graphs without low vertices for $k \ge 6$. In 1963 Gallai found infinite family of 4-critical, 4-regular, non-planar graphs, however, embeddable in the Klein bottle.

Using Dirac's construction we can get k-critical graphs without low vertices for $k \ge 6$. In 1963 Gallai found infinite family of 4-critical, 4-regular, non-planar graphs, however, embeddable in the Klein bottle. A planar 4-critical and 4-regular graph was given by Koester in 1985.

Thank you for your attention!

3

<ロト < 四ト < 三ト < 三ト