A note on degree-constrained subgraphs by András Frank, Lap Chi Lau and Jácint Szabó

presented by Krzysztof Baranski

Theoretical Computer Science
Jagiellonian University
Combinatorial Optimization Seminar

f-factor

Let $G=(V, E)$ be a graph.

f-factor

Let $G=(V, E)$ be a graph.
Let $f: V \rightarrow 2^{\mathbb{Z}}$ be a function assigning to each $v \in V$ a set of integers in $\{0,1,2, \ldots, d(v)\}$, where $d(v)$ denotes the degree of v in G.

f-factor

Let $G=(V, E)$ be a graph.
Let $f: V \rightarrow 2^{\mathbb{Z}}$ be a function assigning to each $v \in V$ a set of integers in $\{0,1,2, \ldots, d(v)\}$, where $d(v)$ denotes the degree of v in G.

Definition

f-factor is a spanning subgraph H of G in which $d_{H}(v) \in f(v)$ for all $v \in V$.

Theorem 1 (Shirazi and Verstraëte)

Theorem

Let $G=(V, E)$ be a graph and suppose that f satisfies

$$
|f(v)|>\lceil d(v) / 2\rceil
$$

for every $v \in V$.
Then G has an f-factor.

Combinatorial Nullstellensatz

Theorem

Let $g \in \mathbb{F}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ be a polynomial, and suppose the coefficient of the monomial $\prod_{i=1}^{n} X_{i}^{t_{i}}$ in g is non-zero, where $t_{1}+t_{2}+\ldots+t_{n}$ is the total degree of g.
Then, for any sets $S_{1}, S_{2}, \ldots, S_{n} \subset \mathbb{F}$ with $\left|S_{1}\right|>t_{1},\left|S_{2}\right|>t_{2}, \ldots,\left|S_{n}\right|>t_{n}$, there exists $x \in S_{1} \times S_{2} \times \ldots \times S_{n}$ such that $g(x) \neq 0$.

F-avoiding graphs

Definition

If $F(v) \subseteq \mathbb{N}$ is a set of forbidden degrees for every $v \in V$, then a subgraph $G^{\prime}=\left(V, E^{\prime}\right)$ of G is called \mathbf{F}-avoiding if $d_{G^{\prime}}(v) \notin F(v)$ for all $v \in V$.

Theorem 1 (Shirazi and Verstraëte)

Theorem

Let $G=(V, E)$ be a graph and suppose that f satisfies

$$
|f(v)|>\lceil d(v) / 2\rceil
$$

for every $v \in V$.
Then G has an f-factor.

Theorem 1 (Shirazi and Verstraëte)

Theorem

Let $G=(V, E)$ be a graph and suppose that f satisfies

$$
|f(v)|>\lceil d(v) / 2\rceil
$$

for every $v \in V$.
Then G has an f-factor.

Theorem

Let $G=(V, E)$ be a graph and

$$
|F(v)| \leq d(v) / 2
$$

for every $v \in V$.
Then G has an F-avoiding subgraph.

Theorem 2

Definition

In a directed graph $D=(V, \vec{E})$ we denote by $\varrho_{D}(v)$ the in-degree of $v \in V$.

Theorem 2

Definition

In a directed graph $D=(V, \vec{E})$ we denote by $\varrho_{D}(v)$ the in-degree of $v \in V$.

Theorem

If $G=(V, E)$ is an undirected graph and it has an orientation D for which $\varrho_{D}(v) \geq|F(v)|$ for every node v, then G has an F-avoiding subgraph.

Theorem 2 - proof

Theorem

If $G=(V, E)$ is an undirected graph and it has an orientation D for which $\varrho_{D}(v) \geq|F(v)|$ for every node v, then G has an F-avoiding subgraph.

Proof (induction on the number of edges):

Theorem 2 - proof

Theorem

If $G=(V, E)$ is an undirected graph and it has an orientation D for which $\varrho_{D}(v) \geq|F(v)|$ for every node v, then G has an F-avoiding subgraph.

Proof (induction on the number of edges):

\vec{e} - directed edge of D, corresponding with an undirected edge e.

Theorem 2 - proof

Theorem

If $G=(V, E)$ is an undirected graph and it has an orientation D for which $\varrho_{D}(v) \geq|F(v)|$ for every node v, then G has an F-avoiding subgraph.

Proof (induction on the number of edges):

\vec{e} - directed edge of D, corresponding with an undirected edge e. Base case:

Theorem 2 - proof

Theorem

If $G=(V, E)$ is an undirected graph and it has an orientation D for which $\varrho_{D}(v) \geq|F(v)|$ for every node v, then G has an F -avoiding subgraph.

Proof (induction on the number of edges):

\vec{e} - directed edge of D, corresponding with an undirected edge e.

Base case:

If 0 is not a forbidden degree at any node, then the empty subgraph (V, \emptyset) is F-avoiding.

Theorem 2 - proof

Theorem

If $G=(V, E)$ is an undirected graph and it has an orientation D for which $\varrho_{D}(v) \geq|F(v)|$ for every node v, then G has an F-avoiding subgraph.

Proof (induction on the number of edges):

\vec{e} - directed edge of D, corresponding with an undirected edge e.

Base case:

If 0 is not a forbidden degree at any node, then the empty subgraph (V, \emptyset) is F-avoiding. Induction step:

Theorem 2 - proof

Theorem

If $G=(V, E)$ is an undirected graph and it has an orientation D for which $\varrho_{D}(v) \geq|F(v)|$ for every node v, then G has an F -avoiding subgraph.

Proof (induction on the number of edges):

\vec{e} - directed edge of D, corresponding with an undirected edge e.

Base case:

If 0 is not a forbidden degree at any node, then the empty subgraph (V, \emptyset) is F-avoiding.

Induction step:

Suppose that $0 \in F(t)$ for a node t.

Theorem 2 - proof

Theorem

If $G=(V, E)$ is an undirected graph and it has an orientation D for which $\varrho_{D}(v) \geq|F(v)|$ for every node v, then G has an F -avoiding subgraph.

Proof (induction on the number of edges):

\vec{e} - directed edge of D, corresponding with an undirected edge e.

Base case:

If 0 is not a forbidden degree at any node, then the empty subgraph (V, \emptyset) is F-avoiding.

Induction step:

Suppose that $0 \in F(t)$ for a node t.
Then $\varrho_{D}(t) \geq|F(t)| \geq 1$

Theorem 2 - proof

Theorem

If $G=(V, E)$ is an undirected graph and it has an orientation D for which $\varrho_{D}(v) \geq|F(v)|$ for every node v, then G has an F -avoiding subgraph.

Proof (induction on the number of edges):

\vec{e} - directed edge of D, corresponding with an undirected edge e.

Base case:

If 0 is not a forbidden degree at any node, then the empty subgraph (V, \emptyset) is F-avoiding.

Induction step:

Suppose that $0 \in F(t)$ for a node t.
Then $\varrho_{D}(t) \geq|F(t)| \geq 1$
There is an edge $e=s t$ of G for which \vec{e} is directed toward t.

Theorem 2 - proof

Induction step:

Suppose that $0 \in F(t)$ for a node t.
Then $\varrho_{D}(t) \geq|F(t)| \geq 1$
There is an edge $e=s t$ of G for which \vec{e} is directed toward t.

Theorem 2 - proof

Induction step:

Suppose that $0 \in F(t)$ for a node t.
Then $\varrho_{D}(t) \geq|F(t)| \geq 1$
There is an edge $e=s t$ of G for which \vec{e} is directed toward t. $G^{-}=G-e$

Theorem 2 - proof

Induction step:

Suppose that $0 \in F(t)$ for a node t.
Then $\varrho_{D}(t) \geq|F(t)| \geq 1$
There is an edge $e=s t$ of G for which \vec{e} is directed toward t.
$G^{-}=G-e$
$D^{-}=D-\vec{e}$

Theorem 2 - proof

Induction step:

Suppose that $0 \in F(t)$ for a node t.
Then $\varrho_{D}(t) \geq|F(t)| \geq 1$
There is an edge $e=s t$ of G for which \vec{e} is directed toward t.
$G^{-}=G-e$
$D^{-}=D-\vec{e}$
$F^{-}(t)=\{i-1: i \in F(t) \backslash\{0\}\}$
$F^{-}(s)=\{i-1: i \in F(s) \backslash\{0\}\}$
$F^{-}(z)=F(z)$ for $z \in V \backslash\{s, t\}$

Theorem 2 - proof

Induction step:

Suppose that $0 \in F(t)$ for a node t.
Then $\varrho_{D}(t) \geq|F(t)| \geq 1$
There is an edge $e=s t$ of G for which \vec{e} is directed toward t.
$G^{-}=G-e$
$D^{-}=D-\vec{e}$
$F^{-}(t)=\{i-1: i \in F(t) \backslash\{0\}\}$
$F^{-}(s)=\{i-1: i \in F(s) \backslash\{0\}\}$
$F^{-}(z)=F(z)$ for $z \in V \backslash\{s, t\}$
Since $\left|F^{-}(t)\right|=|F(t)|-1, \varrho_{D^{-}}(v) \geq\left|F^{-}(v)\right|$ holds for every node v.

Theorem 2 - proof

Induction step:

Suppose that $0 \in F(t)$ for a node t.
Then $\varrho_{D}(t) \geq|F(t)| \geq 1$
There is an edge $e=s t$ of G for which \vec{e} is directed toward t.
$G^{-}=G-e$
$D^{-}=D-\vec{e}$
$F^{-}(t)=\{i-1: i \in F(t) \backslash\{0\}\}$
$F^{-}(s)=\{i-1: i \in F(s) \backslash\{0\}\}$
$F^{-}(z)=F(z)$ for $z \in V \backslash\{s, t\}$
Since $\left|F^{-}(t)\right|=|F(t)|-1, \varrho_{D^{-}}(v) \geq\left|F^{-}(v)\right|$ holds for every node v.
By induction, there is an F-avoiding subgraph $G^{\prime \prime}$ of G^{-}.

Theorem 2 - proof

Induction step:

Suppose that $0 \in F(t)$ for a node t.
Then $\varrho_{D}(t) \geq|F(t)| \geq 1$
There is an edge $e=s t$ of G for which \vec{e} is directed toward t.
$G^{-}=G-e$
$D^{-}=D-\vec{e}$
$F^{-}(t)=\{i-1: i \in F(t) \backslash\{0\}\}$
$F^{-}(s)=\{i-1: i \in F(s) \backslash\{0\}\}$
$F^{-}(z)=F(z)$ for $z \in V \backslash\{s, t\}$
Since $\left|F^{-}(t)\right|=|F(t)|-1, \varrho_{D^{-}}(v) \geq\left|F^{-}(v)\right|$ holds for every node v.
By induction, there is an F-avoiding subgraph $G^{\prime \prime}$ of G^{-}.
By the construction of F^{-}, the subgraph $G^{\prime}:=G^{\prime \prime}+e$ of G is F-avoiding.

Theorem 1 - proof

Theorem

Let $G=(V, E)$ be a graph and

$$
|F(v)| \leq d(v) / 2
$$

for every $v \in V$.
Then G has an F-avoiding subgraph.

Theorem 1 - proof

Theorem

Let $G=(V, E)$ be a graph and

$$
|F(v)| \leq d(v) / 2
$$

for every $v \in V$.
Then G has an F-avoiding subgraph.

Proof:

Theorem 1 - proof

Theorem

Let $G=(V, E)$ be a graph and

$$
|F(v)| \leq d(v) / 2
$$

for every $v \in V$.
Then G has an F-avoiding subgraph.

Proof:

Every undirected graph G has an orientation D in which $\varrho_{D}(v) \geq\left\lfloor d_{G}(v) / 2\right\rfloor$ for every node v.

Theorem 1 - proof

Theorem

Let $G=(V, E)$ be a graph and

$$
|F(v)| \leq d(v) / 2
$$

for every $v \in V$.
Then G has an F-avoiding subgraph.

Proof:

Every undirected graph G has an orientation D in which $\varrho_{D}(v) \geq\left\lfloor d_{G}(v) / 2\right\rfloor$ for every node v. Therefore Theorem 2 implies Theorem 1.

Theorem 3

Theorem

Let $G=(V, E)$ be an undirected graph, and let F satisfy

$$
\sum_{v \in V}|F(v)|<|E|
$$

and $0 \notin F(v)$.
Then G has a nonempty F-avoiding subgraph G^{\prime}.

Theorem 3

Theorem

Let $G=(V, E)$ be an undirected graph, and let F satisfy

$$
\sum_{v \in V}|F(v)|<|E|
$$

and $0 \notin F(v)$.
Then G has a nonempty F-avoiding subgraph G^{\prime}.

Proof(again induction on the number of edges):

Theorem 3

Theorem

Let $G=(V, E)$ be an undirected graph, and let F satisfy

$$
\sum_{v \in V}|F(v)|<|E|
$$

and $0 \notin F(v)$.
Then G has a nonempty F-avoiding subgraph G^{\prime}.

Proof(again induction on the number of edges):

If $d_{G}(v) \notin F(v)$ for all $v \in V$, then the nonempty $G=G$ will do.

Theorem 3

Theorem

Let $G=(V, E)$ be an undirected graph, and let F satisfy

$$
\sum_{v \in V}|F(v)|<|E|
$$

and $0 \notin F(v)$.
Then G has a nonempty F-avoiding subgraph G^{\prime}.

Proof(again induction on the number of edges):

If $d_{G}(v) \notin F(v)$ for all $v \in V$, then the nonempty $G=G$ will do.
Otherwise, there exists a node $t \in V$ where $d_{G}(t) \in F(t)$.

Theorem 3

Theorem

Let $G=(V, E)$ be an undirected graph, and let F satisfy

$$
\sum_{v \in V}|F(v)|<|E|
$$

and $0 \notin F(v)$.
Then G has a nonempty F-avoiding subgraph G^{\prime}.

Proof(again induction on the number of edges):

If $d_{G}(v) \notin F(v)$ for all $v \in V$, then the nonempty $G=G$ will do.
Otherwise, there exists a node $t \in V$ where $d_{G}(t) \in F(t)$. As $0 \notin F(v)$, there is an edge e of G incident to t.

Theorem 3

Theorem

Let $G=(V, E)$ be an undirected graph, and let F satisfy

$$
\sum_{v \in V}|F(v)|<|E|
$$

and $0 \notin F(v)$.
Then G has a nonempty F-avoiding subgraph G^{\prime}.

Proof(again induction on the number of edges):

If $d_{G}(v) \notin F(v)$ for all $v \in V$, then the nonempty $G=G$ will do.
Otherwise, there exists a node $t \in V$ where $d_{G}(t) \in F(t)$.
As $0 \notin F(v)$, there is an edge e of G incident to t.
$G^{-}=G-e$,

Theorem 3

Theorem

Let $G=(V, E)$ be an undirected graph, and let F satisfy

$$
\sum_{v \in V}|F(v)|<|E|
$$

and $0 \notin F(v)$.
Then G has a nonempty F-avoiding subgraph G^{\prime}.

Proof(again induction on the number of edges):

If $d_{G}(v) \notin F(v)$ for all $v \in V$, then the nonempty $G=G$ will do.
Otherwise, there exists a node $t \in V$ where $d_{G}(t) \in F(t)$.
As $0 \notin F(v)$, there is an edge e of G incident to t.
$G^{-}=G-e, F^{-}(t)=F(t) \backslash\left\{d_{G}(t)\right\}, F^{-}(z)=F(z)$ for $z \in V \backslash\{t\}$

Theorem 3

Theorem

Let $G=(V, E)$ be an undirected graph, and let F satisfy

$$
\sum_{v \in V}|F(v)|<|E|
$$

and $0 \notin F(v)$.
Then G has a nonempty F-avoiding subgraph G^{\prime}.

Proof(again induction on the number of edges):

If $d_{G}(v) \notin F(v)$ for all $v \in V$, then the nonempty $G=G$ will do.
Otherwise, there exists a node $t \in V$ where $d_{G}(t) \in F(t)$.
As $0 \notin F(v)$, there is an edge e of G incident to t.
$G^{-}=G-e, F^{-}(t)=F(t) \backslash\left\{d_{G}(t)\right\}, F^{-}(z)=F(z)$ for $z \in V \backslash\{t\}$
By induction, there is a nonempty F^{-}-avoiding subgraph G^{\prime} of G^{-}.

Theorem 3

Theorem

Let $G=(V, E)$ be an undirected graph, and let F satisfy

$$
\sum_{v \in V}|F(v)|<|E|
$$

and $0 \notin F(v)$.
Then G has a nonempty F-avoiding subgraph G^{\prime}.

Proof(again induction on the number of edges):

If $d_{G}(v) \notin F(v)$ for all $v \in V$, then the nonempty $G=G$ will do.
Otherwise, there exists a node $t \in V$ where $d_{G}(t) \in F(t)$.
As $0 \notin F(v)$, there is an edge e of G incident to t.
$G^{-}=G-e, F^{-}(t)=F(t) \backslash\left\{d_{G}(t)\right\}, F^{-}(z)=F(z)$ for $z \in V \backslash\{t\}$
By induction, there is a nonempty F^{-}-avoiding subgraph G^{\prime} of G^{-}. As $d_{G^{\prime}}(t)<d_{G}(t)$, this G^{\prime} is also F-avoiding.

Bibliography

(1) Frank, A.; Lau, L.C.; Szabó, J. A note on degree-constrained subgraphs, 2007.
(2) Shirazi, H.; Verstraëte, J. A note on polynomials and f-factors of graphs, 2008.

