A note on degree-constrained subgraphs by András Frank, Lap Chi Lau and Jácint Szabó

presented by Krzysztof Baranski

Theoretical Computer Science Jagiellonian University

Combinatorial Optimization Seminar

Let G = (V, E) be a graph.

3

Let G = (V, E) be a graph. Let $f : V \to 2^{\mathbb{Z}}$ be a function assigning to each $v \in V$ a set of integers in $\{0, 1, 2, ..., d(v)\}$, where d(v) denotes the degree of v in G.

Let G = (V, E) be a graph. Let $f : V \to 2^{\mathbb{Z}}$ be a function assigning to each $v \in V$ a set of integers in $\{0, 1, 2, ..., d(v)\}$, where d(v) denotes the degree of v in G.

Definition

f-factor is a spanning subgraph *H* of *G* in which $d_H(v) \in f(v)$ for all $v \in V$.

Let G = (V, E) be a graph and suppose that f satisfies

 $|f(v)| > \lceil d(v)/2 \rceil$

for every $v \in V$. Then *G* has an *f*-factor.

Let $g \in \mathbb{F}[X_1, X_2, ..., X_n]$ be a polynomial, and suppose the coefficient of the monomial $\prod_{i=1}^n X_i^{t_i}$ in g is non-zero, where $t_1 + t_2 + ... + t_n$ is the total degree of g. Then, for any sets $S_1, S_2, ..., S_n \subset \mathbb{F}$ with $|S_1| > t_1, |S_2| > t_2, ..., |S_n| > t_n$, there exists $x \in S_1 \times S_2 \times ... \times S_n$ such that $g(x) \neq 0$.

Definition

If $F(v) \subseteq \mathbb{N}$ is a set of forbidden degrees for every $v \in V$, then a subgraph G' = (V, E') of G is called **F-avoiding** if $d_{G'}(v) \notin F(v)$ for all $v \in V$.

< 日 > < 同 > < 回 > < 回 > .

Let G = (V, E) be a graph and suppose that f satisfies

 $|f(v)| > \lceil d(v)/2 \rceil$

for every $v \in V$. Then G has an f-factor.

Let G = (V, E) be a graph and suppose that f satisfies

 $|f(v)| > \lceil d(v)/2 \rceil$

for every $v \in V$. Then *G* has an *f*-factor.

Theorem

Let G = (V, E) be a graph and

 $|F(v)| \le d(v)/2$

for every $v \in V$. Then G has an F-avoiding subgraph.

Definition

In a directed graph $D = (V, \vec{E})$ we denote by $\varrho_D(v)$ the in-degree of $v \in V$.

Definition

In a directed graph $D = (V, \vec{E})$ we denote by $\rho_D(v)$ the in-degree of $v \in V$.

Theorem

If G = (V, E) is an undirected graph and it has an orientation D for which $\rho_D(v) \ge |F(v)|$ for every node v, then G has an F-avoiding subgraph.

If G = (V, E) is an undirected graph and it has an orientation D for which $\varrho_D(v) \ge |F(v)|$ for every node v, then G has an F-avoiding subgraph.

Proof (induction on the number of edges):

If G = (V, E) is an undirected graph and it has an orientation D for which $\rho_D(v) \ge |F(v)|$ for every node v, then G has an F-avoiding subgraph.

Proof (induction on the number of edges):

 \overrightarrow{e} - directed edge of D, corresponding with an undirected edge e.

If G = (V, E) is an undirected graph and it has an orientation D for which $\rho_D(v) \ge |F(v)|$ for every node v, then G has an F-avoiding subgraph.

Proof (induction on the number of edges):

 \overrightarrow{e} - directed edge of *D*, corresponding with an undirected edge *e*. **Base case:**

If G = (V, E) is an undirected graph and it has an orientation D for which $\rho_D(v) \ge |F(v)|$ for every node v, then G has an F-avoiding subgraph.

Proof (induction on the number of edges):

 \overrightarrow{e} - directed edge of D, corresponding with an undirected edge e.

Base case:

If 0 is not a forbidden degree at any node, then the empty subgraph (V, \emptyset) is *F*-avoiding.

If G = (V, E) is an undirected graph and it has an orientation D for which $\rho_D(v) \ge |F(v)|$ for every node v, then G has an F-avoiding subgraph.

Proof (induction on the number of edges):

 \overrightarrow{e} - directed edge of D, corresponding with an undirected edge e.

Base case:

If 0 is not a forbidden degree at any node, then the empty subgraph (V, \emptyset) is F-avoiding.

Induction step:

Krzysztof Baranski

18.05.2023

If G = (V, E) is an undirected graph and it has an orientation D for which $\rho_D(v) \ge |F(v)|$ for every node v, then G has an F-avoiding subgraph.

Proof (induction on the number of edges):

 \overrightarrow{e} - directed edge of *D*, corresponding with an undirected edge *e*.

Base case:

If 0 is not a forbidden degree at any node, then the empty subgraph (V, \emptyset) is *F*-avoiding.

Induction step:

Suppose that $0 \in F(t)$ for a node t.

If G = (V, E) is an undirected graph and it has an orientation D for which $\rho_D(v) \ge |F(v)|$ for every node v, then G has an F-avoiding subgraph.

Proof (induction on the number of edges):

 \overrightarrow{e} - directed edge of *D*, corresponding with an undirected edge *e*.

Base case:

If 0 is not a forbidden degree at any node, then the empty subgraph (V, \emptyset) is *F*-avoiding.

Induction step:

Suppose that $0 \in F(t)$ for a node t. Then $\varrho_D(t) \ge |F(t)| \ge 1$

If G = (V, E) is an undirected graph and it has an orientation D for which $\rho_D(v) \ge |F(v)|$ for every node v, then G has an F-avoiding subgraph.

Proof (induction on the number of edges):

 \overrightarrow{e} - directed edge of D, corresponding with an undirected edge e.

Base case:

If 0 is not a forbidden degree at any node, then the empty subgraph (V, \emptyset) is *F*-avoiding.

Induction step:

Suppose that $0 \in F(t)$ for a node t. Then $\varrho_D(t) \ge |F(t)| \ge 1$ There is an edge e = st of G for which \overrightarrow{e} is directed toward t.

Induction step:

Suppose that $0 \in F(t)$ for a node t. Then $\varrho_D(t) \ge |F(t)| \ge 1$ There is an edge e = st of G for which \overrightarrow{e} is directed toward t.

Induction step:

Suppose that $0 \in F(t)$ for a node t. Then $\rho_D(t) \ge |F(t)| \ge 1$ There is an edge e = st of G for which \overrightarrow{e} is directed toward t. $G^- = G - e$

Induction step:

Suppose that $0 \in F(t)$ for a node t. Then $\varrho_D(t) \ge |F(t)| \ge 1$ There is an edge e = st of G for which \overrightarrow{e} is directed toward t. $G^- = G - e$ $D^- = D - \overrightarrow{e}$

Induction step:

Suppose that $0 \in F(t)$ for a node t. Then $\varrho_D(t) \ge |F(t)| \ge 1$ There is an edge e = st of G for which \overrightarrow{e} is directed toward t. $G^- = G - e$ $D^- = D - \overrightarrow{e}$ $F^-(t) = \{i - 1 : i \in F(t) \setminus \{0\}\}$ $F^-(s) = \{i - 1 : i \in F(s) \setminus \{0\}\}$ $F^-(z) = F(z)$ for $z \in V \setminus \{s, t\}$

Induction step:

Suppose that $0 \in F(t)$ for a node t. Then $\rho_D(t) \ge |F(t)| \ge 1$ There is an edge e = st of G for which \overrightarrow{e} is directed toward t. $G^- = G - e$ $D^- = D - \overrightarrow{e}$ $F^-(t) = \{i - 1 : i \in F(t) \setminus \{0\}\}$ $F^-(s) = \{i - 1 : i \in F(s) \setminus \{0\}\}$ $F^-(z) = F(z)$ for $z \in V \setminus \{s, t\}$ Since $|F^-(t)| = |F(t)| - 1$, $\rho_{D^-}(v) \ge |F^-(v)|$ holds for every node v.

Induction step:

Suppose that $0 \in F(t)$ for a node t. Then $\rho_D(t) \ge |F(t)| \ge 1$ There is an edge e = st of G for which \overrightarrow{e} is directed toward t. $G^- = G - e$ $D^- = D - \overrightarrow{e}$ $F^-(t) = \{i - 1 : i \in F(t) \setminus \{0\}\}$ $F^-(s) = \{i - 1 : i \in F(s) \setminus \{0\}\}$ $F^-(z) = F(z)$ for $z \in V \setminus \{s, t\}$ Since $|F^-(t)| = |F(t)| - 1$, $\rho_{D^-}(v) \ge |F^-(v)|$ holds for every node v. By induction, there is an F-avoiding subgraph G'' of G^- .

Induction step:

Suppose that $0 \in F(t)$ for a node t. Then $\rho_D(t) > |F(t)| > 1$ There is an edge e = st of G for which \overrightarrow{e} is directed toward t. $G^{-} = G - e$ $D^- - D - \overrightarrow{P}$ $F^{-}(t) = \{i - 1 : i \in F(t) \setminus \{0\}\}$ $F^{-}(s) = \{i - 1 : i \in F(s) \setminus \{0\}\}$ $F^{-}(z) = F(z)$ for $z \in V \setminus \{s, t\}$ Since $|F^{-}(t)| = |F(t)| - 1$, $\rho_{D^{-}}(v) \ge |F^{-}(v)|$ holds for every node v. By induction, there is an F-avoiding subgraph G'' of G^- . By the construction of F^- , the subgraph G' := G'' + e of G is F-avoiding.

<日本

<</p>

Theorem

Let G = (V, E) be a graph and

 $|F(v)| \leq d(v)/2$

for every $v \in V$. Then G has an F-avoiding subgraph.

- 4 ∃ ▶

< (17) > < (17) > <

э

Theorem

Let G = (V, E) be a graph and

 $|F(v)| \leq d(v)/2$

for every $v \in V$. Then G has an F-avoiding subgraph.

Proof:

- 4 ∃ ▶

< (17) > < (17) > <

э

Theorem

Let G = (V, E) be a graph and

 $|F(v)| \leq d(v)/2$

for every $v \in V$. Then G has an F-avoiding subgraph.

Proof:

Every undirected graph G has an orientation D in which $\rho_D(v) \ge \lfloor d_G(v)/2 \rfloor$ for every node v.

Theorem

Let G = (V, E) be a graph and

 $|F(v)| \leq d(v)/2$

for every $v \in V$. Then G has an F-avoiding subgraph.

Proof:

Every undirected graph G has an orientation D in which $\rho_D(v) \ge \lfloor d_G(v)/2 \rfloor$ for every node v. Therefore **Theorem 2** implies **Theorem 1**.

Theorem

Let G = (V, E) be an undirected graph, and let F satisfy

$$\sum_{v \in V} |F(v)| < |E|$$

and $0 \notin F(v)$. Then G has a nonempty F-avoiding subgraph G'.

э

Theorem

Let G = (V, E) be an undirected graph, and let F satisfy

$$\sum_{v \in V} |F(v)| < |E|$$

and $0 \notin F(v)$. Then G has a nonempty F-avoiding subgraph G'.

Proof(again induction on the number of edges):

Theorem

Let G = (V, E) be an undirected graph, and let F satisfy

 $\sum_{v \in V} |F(v)| < |E|$

and $0 \notin F(v)$. Then G has a nonempty F-avoiding subgraph G'.

Proof(again induction on the number of edges): If $d_G(v) \notin F(v)$ for all $v \in V$, then the nonempty G = G will do.

Theorem

Let G = (V, E) be an undirected graph, and let F satisfy

 $\sum_{v \in V} |F(v)| < |E|$

and $0 \notin F(v)$. Then G has a nonempty F-avoiding subgraph G'.

Proof(again induction on the number of edges): If $d_G(v) \notin F(v)$ for all $v \in V$, then the nonempty G = G will do. Otherwise, there exists a node $t \in V$ where $d_G(t) \in F(t)$.

Theorem

Let G = (V, E) be an undirected graph, and let F satisfy

 $\sum_{v \in V} |F(v)| < |E|$

and $0 \notin F(v)$. Then G has a nonempty F-avoiding subgraph G'.

Proof(again induction on the number of edges): If $d_G(v) \notin F(v)$ for all $v \in V$, then the nonempty G = G will do. Otherwise, there exists a node $t \in V$ where $d_G(t) \in F(t)$. As $0 \notin F(v)$, there is an edge e of G incident to t.

Theorem

Let G = (V, E) be an undirected graph, and let F satisfy

 $\sum_{v \in V} |F(v)| < |E|$

and $0 \notin F(v)$. Then G has a nonempty F-avoiding subgraph G'.

Proof(again induction on the number of edges): If $d_G(v) \notin F(v)$ for all $v \in V$, then the nonempty G = G will do. Otherwise, there exists a node $t \in V$ where $d_G(t) \in F(t)$. As $0 \notin F(v)$, there is an edge e of G incident to t. $G^- = G - e$,

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

Let G = (V, E) be an undirected graph, and let F satisfy

 $\sum_{v \in V} |F(v)| < |E|$

and $0 \notin F(v)$. Then G has a nonempty F-avoiding subgraph G'.

Proof(again induction on the number of edges): If $d_G(v) \notin F(v)$ for all $v \in V$, then the nonempty G = G will do. Otherwise, there exists a node $t \in V$ where $d_G(t) \in F(t)$. As $0 \notin F(v)$, there is an edge e of G incident to t. $G^- = G - e$, $F^-(t) = F(t) \setminus \{d_G(t)\}, F^-(z) = F(z) \text{ for } z \in V \setminus \{t\}$

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Theorem

Let G = (V, E) be an undirected graph, and let F satisfy

 $\sum_{v \in V} |F(v)| < |E|$

and $0 \notin F(v)$. Then G has a nonempty F-avoiding subgraph G'.

Proof(again induction on the number of edges): If $d_G(v) \notin F(v)$ for all $v \in V$, then the nonempty G = G will do. Otherwise, there exists a node $t \in V$ where $d_G(t) \in F(t)$. As $0 \notin F(v)$, there is an edge e of G incident to t. $G^- = G - e$, $F^-(t) = F(t) \setminus \{d_G(t)\}, F^-(z) = F(z) \text{ for } z \in V \setminus \{t\}$ By induction, there is a nonempty F^- -avoiding subgraph G' of G^- .

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Theorem

Let G = (V, E) be an undirected graph, and let F satisfy

 $\sum_{v \in V} |F(v)| < |E|$

and $0 \notin F(v)$. Then G has a nonempty F-avoiding subgraph G'.

Proof(again induction on the number of edges): If $d_G(v) \notin F(v)$ for all $v \in V$, then the nonempty G = G will do. Otherwise, there exists a node $t \in V$ where $d_G(t) \in F(t)$. As $0 \notin F(v)$, there is an edge e of G incident to t. $G^- = G - e$, $F^-(t) = F(t) \setminus \{d_G(t)\}, F^-(z) = F(z) \text{ for } z \in V \setminus \{t\}$ By induction, there is a nonempty F^- -avoiding subgraph G' of G^- . As $d_{G'}(t) < d_G(t)$, this G' is also F-avoiding.

- Frank, A.; Lau, L.C.; Szabó, J. A note on degree-constrained subgraphs, 2007.
- Shirazi, H.; Verstraëte, J. A note on polynomials and f-factors of graphs, 2008.

< 1 k