Ball Packing

Katarzyna Król

May 25, 2023

About article

Freie Universität

Ball Packings

and
Lorentzian Discrete Geometry
by
陈浩
CHEN, Hao

Circle Packing

Ball (sphere) Packing

(a)

(d)

(b)

(e)

(c)

(f)

Major research problems

The kissing number problem

The kissing number problem asks for the number of non-overlapping unit balls that can be arranged to touch a fixed unit ball

The kissing number problem

Dimension	Lower bound	Upper bound
$\mathbf{1}$	2	
$\mathbf{2}$	6	
$\mathbf{3}$	12	
$\mathbf{4}$	$24^{[7]}$	
5	40	44
6	72	78
7	126	134
$\mathbf{8}$	240	
9	306	363
10	500	553
11	582	869

12	840	1,356
13	$1,154^{[13]}$	2,066
14	$1,606^{[13]}$	3,177
15	2,564	4,858
16	4,320	7,332
17	5,346	11,014
18	7,398	16,469
19	10,668	24,575
20	17,400	36,402
21	27,720	53,878
22	49,896	81,376
23	93,150	123,328
24	196,560	

Major research problems

The densest packing problem

The densest packing problem asks for the largest density of a congruent ball packing (the balls have the same radius) in a given shape (dimension).

Ball Packing

We work in the d-dimensional extended Euclidean space $\hat{\mathbb{R}}^{d}=\mathbb{R}^{d} \cup\{\infty\}$. Let $\|\cdot\|$ denote the Euclidean norm, and $\langle\cdot, \cdot\rangle$ denote the Euclidean inner product.

Definition 1.1.1. A d-ball of curvature κ is one of the following sets:

- $\left\{\mathbf{x} \in \hat{\mathbb{R}}^{d} \mid\|\mathbf{x}-\mathbf{c}\| \leq 1 / \kappa\right\}$ if $\kappa>0$;
- $\left\{\mathbf{x} \in \hat{\mathbb{R}}^{d} \mid\|\mathbf{x}-\mathbf{c}\| \geq-1 / \kappa\right\} \cup\{\infty\}$ if $\kappa<0$;
- $\left\{\mathbf{x} \in \hat{\mathbb{R}}^{d} \mid\langle\mathbf{x}, \hat{\mathbf{n}}\rangle \geq b\right\} \cup\{\infty\}$ if $\kappa=0$.

In the first two cases, the point $\mathbf{c} \in \mathbb{R}^{d}$ is called the center of the ball, and $1 / \kappa$ is the radius of the ball. In the second case, the ball is considered to have negative radius. In the last case, a closed half-space is considered as a ball of infinite radius, the unit vector $\hat{\mathbf{n}}$ is called the normal vector, and $b \in \mathbb{R}$. The boundary of a d-ball is called a $(d-1)$-sphere. It is a $(d-1)$-dimensional hyperplane if the ball is of curvature 0 . In this thesis, balls and spheres are denoted by sans-serif upper-case letters, such as B and S.

Ball Packing

Definition

A d-ball packing is a collection of d-balls in $\hat{\mathbb{R}}^{d}$ with disjoint interiors

Ball Packing

Definition

For a ball packing \mathcal{B}, its tangency graph $G(\mathcal{B})$ takes the balls as vertices, and two vertices are connected if and only if the corresponding balls are tangent

Ball Packing

Definition

A graph G is said to be d-ball packable if there is a d-ball packing \mathcal{B} whose tangency graph is isomorphic to G. In this case, we say that \mathcal{B} is a d-ball packing of G.

Previous works

Koebe-Andreev-Thurston theorem

Every connected simple planar graph is disk packable (2-ball packable).

Descartes' configurations

Descartes' theorem

Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this equation, one can construct a fourth circle tangent to three given, mutually tangent circles.

For four circles that are tangent to each other at six distinct points, with curvatures κ_{i} for $i=1 \ldots 4$, Descartes' theorem says:

$$
\left(\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}\right)^{2}=2\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}+\kappa_{4}^{2}\right) .
$$

To find the radius of a fourth circle tangent to three given kissing circles, the equation can be written

$$
\kappa_{4}=\kappa_{1}+\kappa_{2}+\kappa_{3} \pm 2 \sqrt{\kappa_{1} \kappa_{2}+\kappa_{2} \kappa_{3}+\kappa_{3} \kappa_{1}}
$$

Descartes' configurations - example

Descartes' configurations - example

Descartes' configurations - apollonian packing

Apollonian packing is created using formula:

$$
\kappa_{4}=\kappa_{1}+\kappa_{2}+\kappa_{3} \pm 2 \sqrt{\kappa_{1} \kappa_{2}+\kappa_{2} \kappa_{3}+\kappa_{3} \kappa_{1}}
$$

Descartes' configurations - d-dimensional

A Descartes' configuration in dimension d is a d-ball packing consisting of $d+2$ pairwise tangent balls. The tangency graph of a Descartes' configuration is the complete graph on $d+2$ vertices. This is the basic element for the construction of many ball packings in this thesis.

Theorem 2.1.1 (Descartes-Soddy-Gosset Theorem). In dimension d, if a set $\mathscr{D}=$ $\left\{\mathrm{B}_{1}, \ldots, \mathrm{~B}_{d+2}\right\}$ of $d+2$ balls form a Descartes' configuration, are κ_{i} are the curvature of $\mathrm{B}_{i}(1 \leq i \leq d+2)$, then

$$
\begin{equation*}
\sum_{i=1}^{d+2} \kappa_{i}^{2}=\frac{1}{d}\left(\sum_{i=1}^{d+2} \kappa_{i}\right)^{2} \tag{2.1}
\end{equation*}
$$

Soddy poem in Nature magazine (1936)

The Kiss Precise

FOR pairs of lips to kiss maybe Involves no trigonometry. 'Tis not so when four circles kiss Each one the other three.
To bring this off the four must be As three in one or one in three. If one in three, beyond a doubt Each gets three kisses from without. If three in one, then is that one Thrice kissed internally.

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of The distance from the centre. Though their intrigue left Euclid dumb There's now no need for rule of thumb.

Since zero bend's a dead straight line And concave bends have minus sign, The sum of the squares of all four bends Is half the square of their sum.

To spy out spherical affairs
An oscular surveyor
Might find the task laborious,
The sphere is much the gayer, And now besides the pair of pairs A fifth sphere in the kissing shares. Yet, signs and zero as before, For each to kiss the other four The square of the sum of all five bends Is thrice the sum of their squares.
F. Soddy.
© 1936 Nature Publishing Group

Gosset poem in Nature magazine (1937)

The Kiss Precise (generalized) by Thorold Gosset

And let us not confine our cares
To simple circles, planes and spheres,
But rise to hyper flats and bends
Where kissing multiple appears,
In n-ic space the kissing pairs
Are hyperspheres, and Truth declares,
As $n+2$ such osculate
Each with an $n+1$ fold mate
The square of the sum of all the bends
Is n times the sum of their squares.

Apollonian packings and stacked polytopes

Definition

A simplicial d-polytope is stacked if it can be iteratively constructed from a d-simplex by a sequence of stacking operations.

Apollonian packings and stacked polytopes

Theorem

If a disk packing is Apollonian, then its tangency graph is stacked 3-polytopal. If a graph is stacked 3-polytopal, then it is disk packable with an Apollonian disk packing.

In higher dimenstions if a d-ball packing is Apollonian, then its tangency graph is stacked $(\mathrm{d}+1)$-polytopal.

Graphs in the form of $K_{d} \star P_{m}$

Theorem 2.2.1. Let $d>2$ and $m \geq 0$. A graph in the form of
(i) $K_{2} \star P_{m}$ is 2-ball packable for any m;
(ii) $K_{d} \star P_{m}$ is d-ball packable if $m \leq 4$;
(iii) $K_{d} \star P_{m}$ is not d-ball packable if $m \geq 6$;
(iv) $K_{d} \star P_{5}$ is d-ball packable if and only if $d=3$ or 4 .

Graphs in the form of $K_{d} \star P_{m}$

(i) $K_{2} \star P_{m}$ is 2-ball packable for any m

Graphs in the form of $K_{d} \star P_{m}$

(ii) $K_{d} \star P_{m}$ is d-ball packable if $m \leq 4$

Graphs in the form of $K_{d} \star P_{m}$

(ii) $K_{d} \star P_{m}$ is d-ball packable if $m \leq 4$ Diameter B:

$$
\frac{2}{\kappa_{B}}=\frac{d-1}{d}<1
$$

Diameter E:

$$
\frac{2}{\kappa_{E}}=\frac{d-1}{d}<1,
$$

so diameter $B+$ diameter $E<2$.

Graphs in the form of $K_{d} \star P_{m}$

(iv) $K_{d} \star P_{5}$ is d-ball packable if and only if $d=3$ or 4

Graphs in the form of $K_{d} \star P_{m}$

(iv) $K_{d} \star P_{5}$ is d-ball packable if and only if $d=3$ or 4 Diameter C :

$$
\frac{2}{\kappa_{C}}=\frac{(d-1)^{2}}{d(d+1)}
$$

and sum of diameters B, C and E :

$$
2 \frac{d-1}{d}+\frac{(d-1)^{2}}{d(d+1)}=\frac{3 d^{2}-2 d-1}{d(d+1)}
$$

is <2 only for $d \leq 4$.

Graphs in the form of $K_{d} \star P_{m}$

(iii) $K_{d} \star P_{m}$ is not d-ball packable if $m \geq 6$

Graphs in the form of $K_{d} \star P_{m}$

(iii) $K_{d} \star P_{m}$ is not d-ball packable if $m \geq 6$

Diameter D:

$$
\frac{2}{\kappa_{D}}=\frac{(d-1)^{2}}{d(d+1)}
$$

and sum of diameters B, C, D and E :

$$
2 \frac{d-1}{d}+2 \frac{(d-1)^{2}}{d(d+1)}=4 \frac{d-1}{d+1}
$$

is <2 only for $d<3$.

Graphs in the form of $K_{n} \star G$

Definition

A d-kissing configuration is a packing of unit d-balls all touching another unit ball.

Theorem

A graph in the form of $K_{3} \star G$ is d-ball packable if and only if G is the tangency graph of a $(d-1)$-kissing configuration.

For example, $K_{3} \star G_{12}$ is 4-ball packable, $K_{3} \star G_{24}$ is 5-ball packable.

Packing of grid graphs

Let \mathbb{Z} be the set of integers. For $a \in \mathbb{Z} \cup\{\infty\}$, we use the notation

$$
\mathbb{Z}_{a}= \begin{cases}\{k \mid 0 \leq x<a\} & \text { if } a<\infty \\ \mathbb{Z} & \text { if } a=\infty\end{cases}
$$

For d integers $a_{1}, \ldots, a_{d} \in \mathbb{Z} \cup\{\infty\}$, the d-dimensional grid graph of size $a_{1} \times \cdots \times a_{d}$ is denoted by $Z_{a_{1}} \times Z_{a_{2}} \times \cdots \times Z_{a_{d}}$. It takes the points in $\mathbb{Z}_{a_{1}} \times \cdots \times \mathbb{Z}_{a_{d}}$ as vertices, and two vertices are connected whenever the corresponding points are at distance 1 . The ∞ in the subscript are usually omitted. The graph $Z_{a_{1}} \times Z_{a_{2}} \times \cdots \times Z_{a_{d}}$ can also be regarded as the Cartesian product of d paths respectively on a_{1}, \ldots, a_{d} vertices. We therefore denote the path graph on n vertices by Z_{n}. Again ∞ in the subscript will be omitted, so Z denotes the infinite path graph. If the grid has a same size a in k coordinates, we will simply write Z_{a}^{k} for short. For example, $Z_{2}^{2} \times Z_{3}^{2}$ denotes the $2 \times 2 \times 3 \times 3$ grid graph, Z_{2}^{d} denotes the d-dimensional hypercube graph, and Z^{d} denotes the d-dimensional integer lattice graph.

Packing of grid graphs - main results

Theorem

A grid graph of dimension d is d-ball packable

Theorem

Z^{d+1} is not d-ball packable.

Lorentzian space

Definition

Lorentzian n-space is the inner product space consisting of the vector space \mathbb{R}^{n} together with the n-dimensional Lorentzian inner product.

Definition

Lorentzian inner product of two vectors $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ and $y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ has the form

$$
<x, y>=-x_{0} y_{0}+x_{1} y_{1}+\ldots+x_{n-1} y_{n-1} .
$$

The end

Questions?

