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Circle Graph

Circle Graph is intersection graph of a set of chords of a circle.
Such set is called circle diagram
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The split (join) decomposition

Split decomposition of simple graph G is a bipartition {A,B} of
VG such that EG = EG [A] ∪ EG [B] ∪ (A1 × B1) for some nonempty
A1 ⊂ A and B1 ⊂ B, and each of A and B has at least 2 elements

If {A,B} is a split then G can be expressed as the union of G [A]
and G [B] linked by complete biparte graph.

A connected graph without split is said to be prime. Connected
graphs with less than 4 vertices are thus prime.
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The split (join) decomposition

Let H and K be two disjoint graphs with distinguished vertices h in
H and k in K . We define H ⊠(h,k) K as the graph with set of
vertices VH ∪ VK − {h, k} and edges x − y such that, either x − y
is an edge of H or of K , or we have an edge x − h in H and an
edge k − y in K .

If {A,B} is a split, then G = H ⊠(h,k) K where H is G [A]
augmented with a new vertex h and edges x − h whenever there
are in G edges between x and some u in B. The graph K is
defined similarly from G [B], with a new vertex k. These new
vertices are called markers.
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The split (join) decomposition

A decomposition of G is defined recursively as follows:

▶ {G} is only decomposition of size 1

▶ if {G1, . . . ,Gn} is decomposition of size n and
Gn = H ⊠(h,k) K then {G1, . . . ,Gn−1,H,K} is decomposition
of size n + 1

For a decomposition D = {G1, . . . ,Gn} of graph G we define
Sdg(D) as union between components of D with added ϵ− edges
between neighbour markers

Two decompositions D and D′ of a graph G are isomorphic if
there exists an isomorphism of Sdg(D) onto Sdg(D′) which is the
identity on VG
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Some (not) prime graphs

All prime graphs with at least 4 vertices are 2-connected.

For n ⩾ 5 Cn is prime and Pn, Kn, Sn−1 are not prime.
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edge v2 − v5 and v1 − v3
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All prime graphs with at least 4 vertices are 2-connected.

For n ⩾ 5 Cn is prime and Pn, Kn, Sn−1 are not prime.

The 2-connected undirected graphs having 4 vertices are K4, C4,
and K−

4 (i.e., K4 minus one edge). None of them is prime.
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Canonical decomposition

A decomposition of a connected graph G is canonical if and only
if:

1. each component is either prime or is isomorphic to Kn or to
Sn−1 for n at least 3

2. no two clique components are neighbour

3. the two marker vertices of neighbour star components are
both centers or both not centers



Good split

A split {A,B} is good if it does not overlap any other split {C ,D}
(where we say that {A,B} and {C ,D} overlap if the intersections
A ∩ C , A ∩ D, B ∩ C , B ∩ D are all nonempty).

Theorem(Cunnigham, 1982) A connected undirected graph has a
canonical decomposition, which can be obtained by iterated
splittings relative to good splits. It is unique up to isomorphism.
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Monadic second order logic

Monadic second-order logic (MS logic for short) is the extension of
First-order logic by variables denoting subsets of the domains of
the considered structures, and new atomic formulas of the form
x ∈ X expressing the membership of x in a set X .

C2MS logic is extension of MS by even cardinality set predicate.

A monadic second-order transduction is a transformation of graphs,
more generally of relational structures, expressible by MS formulas
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Evaluating split decomposition graphs

For a split decomposition graph H, we let Eval(H) be the graph G
defined as follows:

1. VG is the set of vertices of H incident to no ϵ− edge,

2. the edges of G are the solid edges of H not adjacent to any
ϵ− edge and the edges between x and y such that there is in
H a path

x − u1 − v1 − u2 − v2 − · · · − uk − vk − y

where the edges ui − vi are ϵ− edges and alternate with solid
edges.



Evaluating split decomposition graphs

Theorem (Courcelle, 2006) If D is a decomposition of a connected
graph G , then Eval(Sdg(D)) = G . The mapping Eval is an MS
transduction.



Decomposition and circle graphs

Fact A graph H ⊠ K is a circle graph if and only if H and K are
circle graphs. Hence, every component of the canonical split
decomposition of a circle graph is a circle graph. It follows in
particular that a graph is a circle graph if and only if all its prime
induced subgraphs are circle graphs.



Double occurrence word

Double occurrence word is a word with each letter having two
occurrences or no occurrence.

The alternance graph G (w), where w is double occurrence word, is
undirected graph with V (G ) is the set of letters in w and edge
a− b exists if and only if = u1au2bu3au4bu5 or
w = u1bu2au3bu4au5 for u1, u2, u3, u4, u5 ∈ A∗

Alternance graph is a circle graph
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Double occurrence word

For w double occurrence word and w ′ = uv , for some u, v ∈ A∗,
w ′ is equivalent to w if and only if w = vu or w̃ = vu (where w̃ is
a mirror image of w).

Two equivalent words represent the same circle graph. A circle
graph G is uniquely representable if G = G (w) = G (w ′) implies
w ≡ w ′

Theorem (Bouchet, 1987) A circle graph with at least 5 vertices is
uniquely representable if and only if it is prime.
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Double occurrence word

Theorem There exists a C2MS transduction that associates with
every prime circle graph G a double occurrence word w such that
G (w) = G .



Vertex minors

For two sets A and B, let A∆B = (A \ B) ∪ (B \ A).
Let G = (V ,E ) be a graph and v ∈ V .The graph obtained by
applying local complementation at v to G is
G ∗ v = (V ,E∆{xy : xv , yv ∈ E , x ̸= y}).

We call H is a vertex-minor of G if H can be obtained by applying
a sequence of vertex deletions and local complementations to G .
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Vertex minors

Theorem The set of circle graphs has a characterization in terms
of three forbidden vertex-minors. The three forbidden
vertex-minors are the cycles C5, 6, C7, each with one additional
vertex and some edges.

There exists C2MS formula that checks if given graph is a circle
graph, but is not constructive.
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Relational structures

With w = a1a2 . . . a2n we associate the relational structure
S(w) = ⟨{1, . . . , 2n}, suc , slet⟩ where suc(i , j) holds if and only if
j = i + 1, with also suc(2n, 1), and slet(i , j) holds if and only if
i ̸= j and ai = aj , and the structure
S(w) = ⟨{1, . . . , 2n}, suc , slet⟩ where suc = suc ∪ suc−1.

The mapping that associates G (w) with S(w) is an MS
transduction.
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4-regular simple graphs

Lemma There exist two MS transductions that associate with
every connected 4-regular simple graph H:

1. a set of circuits with vertex set VH × {1, 2}, that represent all
Eulerian trails of H, and

2. the structures ⟨VH , edgH , edgG (E )⟩ for all Eulerian trails E
of H



Neighbours

Let w be a double occurrence word such that G = G (w) is prime
with at least 5 vertices, let a, b ∈ V (w), a ̸= b. We say that a and
b are neighbours in w if w ≡ abw ′ for some w ′ in A∗.

For a, b ∈ VG (⊂ A), a ̸= b, u, v ∈ A− VG , we let G (a, b; u, v) be
the graph G augmented with the path a− u − v − b.

Fact G (a, b; u, v) is a circle graph if and only if a, b are neighbours
in G

Fact That a and b are neighbours in G is expressible by a C2MS
formula.
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Clique-width and tree-width

Theorem A set of connected circle graphs has bounded
clique-width if and only if the set of its chord diagrams has
bounded tree-width. More precisely, there exist functions f and g
such that for every double occurrence word w ,
twd(S(w)) ⩽ f (cwd(G (w))) and cwd(G (w)) ⩽ g(twd(S(w))).
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