Circle graphs and monadic second-order logic

Bruno Courcelle, presented by Mikołaj Kot

October 2023

Circle Graph

Circle Graph is intersection graph of a set of chords of a circle. Such set is called circle diagram

Circle Graph

Circle Graph is intersection graph of a set of chords of a circle. Such set is called circle diagram

Circle Graph

Circle Graph is intersection graph of a set of chords of a circle. Such set is called circle diagram

The split (join) decomposition

Split decomposition of simple graph G is a bipartition $\{A, B\}$ of V_{G} such that $E_{G}=E_{G[A]} \cup E_{G[B]} \cup\left(A_{1} \times B_{1}\right)$ for some nonempty $A_{1} \subset A$ and $B_{1} \subset B$, and each of A and B has at least 2 elements

The split (join) decomposition

Split decomposition of simple graph G is a bipartition $\{A, B\}$ of V_{G} such that $E_{G}=E_{G[A]} \cup E_{G[B]} \cup\left(A_{1} \times B_{1}\right)$ for some nonempty $A_{1} \subset A$ and $B_{1} \subset B$, and each of A and B has at least 2 elements

If $\{A, B\}$ is a split then G can be expressed as the union of $G[A]$ and $G[B]$ linked by complete biparte graph.

A connected graph without split is said to be prime. Connected graphs with less than 4 vertices are thus prime.

The split (join) decomposition

Let H and K be two disjoint graphs with distinguished vertices h in H and k in K. We define $H \boxtimes_{(h, k)} K$ as the graph with set of vertices $V_{H} \cup V_{K}-\{h, k\}$ and edges $x-y$ such that, either $x-y$ is an edge of H or of K, or we have an edge $x-h$ in H and an edge $k-y$ in K.

The split (join) decomposition

Let H and K be two disjoint graphs with distinguished vertices h in H and k in K. We define $H \boxtimes_{(h, k)} K$ as the graph with set of vertices $V_{H} \cup V_{K}-\{h, k\}$ and edges $x-y$ such that, either $x-y$ is an edge of H or of K, or we have an edge $x-h$ in H and an edge $k-y$ in K.

If $\{A, B\}$ is a split, then $G=H \boxtimes_{(h, k)} K$ where H is $G[A]$ augmented with a new vertex h and edges $x-h$ whenever there are in G edges between x and some u in B. The graph K is defined similarly from $G[B]$, with a new vertex k. These new vertices are called markers.

The split (join) decomposition

A decomposition of G is defined recursively as follows:

- $\{G\}$ is only decomposition of size 1
- if $\left\{G_{1}, \ldots, G_{n}\right\}$ is decomposition of size n and $G_{n}=H \boxtimes_{(h, k)} K$ then $\left\{G_{1}, \ldots, G_{n-1}, H, K\right\}$ is decomposition of size $n+1$

The split (join) decomposition

A decomposition of G is defined recursively as follows:

- $\{G\}$ is only decomposition of size 1
- if $\left\{G_{1}, \ldots, G_{n}\right\}$ is decomposition of size n and $G_{n}=H \boxtimes_{(h, k)} K$ then $\left\{G_{1}, \ldots, G_{n-1}, H, K\right\}$ is decomposition of size $n+1$

For a decomposition $\mathcal{D}=\left\{G_{1}, \ldots, G_{n}\right\}$ of graph G we define $\operatorname{Sdg}(\mathcal{D})$ as union between components of \mathcal{D} with added ϵ - edges between neighbour markers

The split (join) decomposition

A decomposition of G is defined recursively as follows:

- $\{G\}$ is only decomposition of size 1
- if $\left\{G_{1}, \ldots, G_{n}\right\}$ is decomposition of size n and $G_{n}=H \boxtimes_{(h, k)} K$ then $\left\{G_{1}, \ldots, G_{n-1}, H, K\right\}$ is decomposition of size $n+1$

For a decomposition $\mathcal{D}=\left\{G_{1}, \ldots, G_{n}\right\}$ of graph G we define $\operatorname{Sdg}(\mathcal{D})$ as union between components of \mathcal{D} with added ϵ - edges between neighbour markers

Two decompositions \mathcal{D} and \mathcal{D}^{\prime} of a graph G are isomorphic if there exists an isomorphism of $\operatorname{Sdg}(\mathcal{D})$ onto $\operatorname{Sdg}\left(\mathcal{D}^{\prime}\right)$ which is the identity on V_{G}

Decomposition - example

Some (not) prime graphs

All prime graphs with at least 4 vertices are 2-connected.

Some (not) prime graphs

All prime graphs with at least 4 vertices are 2-connected.
For $n \geqslant 5 C_{n}$ is prime and P_{n}, K_{n}, S_{n-1} are not prime.

Some (not) prime graphs

Some (not) prime graphs

$A=\left\{v_{1}\right\}$ and $B=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is not a split because $|A|=1$

Some (not) prime graphs

$A=\left\{v_{1}, v_{2}\right\}$ and $B=\left\{v_{3}, v_{4}, v_{5}\right\}$ is not a split because there is no edge $v_{2}-v_{5}$ and $v_{1}-v_{3}$

Some (not) prime graphs

$A=\left\{v_{1}, v_{4}\right\}$ and $B=\left\{v_{2}, v_{3}, v_{5}\right\}$ is not a split because there is no edge $v_{2}-v_{4}$ and $v_{1}-v_{3}$

Some (not) prime graphs

Some (not) prime graphs

$A=\left\{v_{1}, v_{2}\right\}$ and $B=\left\{v_{3}, v_{4}, v_{5}\right\}$ is a split

Some (not) prime graphs

Some (not) prime graphs

$A=\left\{v_{1}, v_{4}\right\}$ and $B=\left\{v_{2}, v_{3}, v_{5}\right\}$ is a split

Some (not) prime graphs

Some (not) prime graphs

$A=\left\{v_{4}, v_{5}\right\}$ and $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a split

Some (not) prime graphs

All prime graphs with at least 4 vertices are 2-connected.

Some (not) prime graphs

All prime graphs with at least 4 vertices are 2-connected.

For $n \geqslant 5 C_{n}$ is prime and P_{n}, K_{n}, S_{n-1} are not prime.

Some (not) prime graphs

All prime graphs with at least 4 vertices are 2-connected.

For $n \geqslant 5 C_{n}$ is prime and P_{n}, K_{n}, S_{n-1} are not prime.
The 2-connected undirected graphs having 4 vertices are K_{4}, C_{4}, and K_{4}^{-}(i.e., K_{4} minus one edge). None of them is prime.

Canonical decomposition

A decomposition of a connected graph G is canonical if and only if:

1. each component is either prime or is isomorphic to K_{n} or to S_{n-1} for n at least 3
2. no two clique components are neighbour
3. the two marker vertices of neighbour star components are both centers or both not centers

Good split

A split $\{A, B\}$ is good if it does not overlap any other split $\{C, D\}$ (where we say that $\{A, B\}$ and $\{C, D\}$ overlap if the intersections $A \cap C, A \cap D, B \cap C, B \cap D$ are all nonempty).

Good split

A split $\{A, B\}$ is good if it does not overlap any other split $\{C, D\}$ (where we say that $\{A, B\}$ and $\{C, D\}$ overlap if the intersections $A \cap C, A \cap D, B \cap C, B \cap D$ are all nonempty).

Theorem(Cunnigham, 1982) A connected undirected graph has a canonical decomposition, which can be obtained by iterated splittings relative to good splits. It is unique up to isomorphism.

Monadic second order logic

Monadic second-order logic (MS logic for short) is the extension of First-order logic by variables denoting subsets of the domains of the considered structures, and new atomic formulas of the form $x \in X$ expressing the membership of x in a set X.

Monadic second order logic

Monadic second-order logic (MS logic for short) is the extension of First-order logic by variables denoting subsets of the domains of the considered structures, and new atomic formulas of the form $x \in X$ expressing the membership of x in a set X.
$C_{2} M S$ logic is extension of $M S$ by even cardinality set predicate.

Monadic second order logic

Monadic second-order logic (MS logic for short) is the extension of First-order logic by variables denoting subsets of the domains of the considered structures, and new atomic formulas of the form $x \in X$ expressing the membership of x in a set X.
$C_{2} M S$ logic is extension of $M S$ by even cardinality set predicate.
A monadic second-order transduction is a transformation of graphs, more generally of relational structures, expressible by MS formulas

Evaluating split decomposition graphs

For a split decomposition graph H, we let Eval(H) be the graph G defined as follows:

1. V_{G} is the set of vertices of H incident to no $\epsilon-e d g e$,
2. the edges of G are the solid edges of H not adjacent to any ϵ - edge and the edges between x and y such that there is in H a path

$$
x-u_{1}-v_{1}-u_{2}-v_{2}-\cdots-u_{k}-v_{k}-y
$$

where the edges $u_{i}-v_{i}$ are ϵ - edges and alternate with solid edges.

Evaluating split decomposition graphs

Theorem (Courcelle, 2006) If \mathcal{D} is a decomposition of a connected graph G, then $\operatorname{Eval}(\operatorname{Sdg}(\mathcal{D}))=G$. The mapping Eval is an MS transduction.

Decomposition and circle graphs

Fact A graph $H \boxtimes K$ is a circle graph if and only if H and K are circle graphs. Hence, every component of the canonical split decomposition of a circle graph is a circle graph. It follows in particular that a graph is a circle graph if and only if all its prime induced subgraphs are circle graphs.

Double occurrence word

Double occurrence word is a word with each letter having two occurrences or no occurrence.

Double occurrence word

Double occurrence word is a word with each letter having two occurrences or no occurrence.

The alternance graph $G(w)$, where w is double occurrence word, is undirected graph with $V(G)$ is the set of letters in w and edge $a-b$ exists if and only if $=u_{1} a u_{2} b u_{3} a u_{4} b u_{5}$ or $w=u_{1} b u_{2} a u_{3} b u_{4} a u_{5}$ for $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \in A^{*}$

Double occurrence word

Double occurrence word is a word with each letter having two occurrences or no occurrence.

The alternance graph $G(w)$, where w is double occurrence word, is undirected graph with $V(G)$ is the set of letters in w and edge $a-b$ exists if and only if $=u_{1} a u_{2} b u_{3} a u_{4} b u_{5}$ or $w=u_{1} b u_{2} a u_{3} b u_{4} a u_{5}$ for $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \in A^{*}$

Alternance graph is a circle graph

Double occurrence word - example

$w=a x b c u y v b y c a u x v$

Double occurrence word - example

$w=a x b c u y v b y c a u x v$

Double occurrence word

For w double occurrence word and $w^{\prime}=u v$, for some $u, v \in A^{*}$, w^{\prime} is equivalent to w if and only if $w=v u$ or $\tilde{w}=v u$ (where \tilde{w} is a mirror image of w).

Double occurrence word

For w double occurrence word and $w^{\prime}=u v$, for some $u, v \in A^{*}$, w^{\prime} is equivalent to w if and only if $w=v u$ or $\tilde{w}=v u$ (where \tilde{w} is a mirror image of w).

Two equivalent words represent the same circle graph. A circle graph G is uniquely representable if $G=G(w)=G\left(w^{\prime}\right)$ implies $w \equiv w^{\prime}$

Double occurrence word

For w double occurrence word and $w^{\prime}=u v$, for some $u, v \in A^{*}$, w^{\prime} is equivalent to w if and only if $w=v u$ or $\tilde{w}=v u$ (where \tilde{w} is a mirror image of w).

Two equivalent words represent the same circle graph. A circle graph G is uniquely representable if $G=G(w)=G\left(w^{\prime}\right)$ implies $w \equiv w^{\prime}$

Theorem (Bouchet, 1987) A circle graph with at least 5 vertices is uniquely representable if and only if it is prime.

Double occurrence word

Theorem There exists a $C_{2} M S$ transduction that associates with every prime circle graph G a double occurrence word w such that $G(w)=G$.

Vertex minors

For two sets A and B, let $A \Delta B=(A \backslash B) \cup(B \backslash A)$. Let $G=(V, E)$ be a graph and $v \in V$. The graph obtained by applying local complementation at v to G is
$G * v=(V, E \Delta\{x y: x v, y v \in E, x \neq y\})$.

Vertex minors

For two sets A and B, let $A \Delta B=(A \backslash B) \cup(B \backslash A)$.
Let $G=(V, E)$ be a graph and $v \in V$.The graph obtained by applying local complementation at v to G is
$G * v=(V, E \Delta\{x y: x v, y v \in E, x \neq y\})$.
We call H is a vertex-minor of G if H can be obtained by applying a sequence of vertex deletions and local complementations to G.

Vertex minors

Theorem The set of circle graphs has a characterization in terms of three forbidden vertex-minors. The three forbidden vertex-minors are the cycles $C_{5}, 6, C_{7}$, each with one additional vertex and some edges.

Vertex minors

Theorem The set of circle graphs has a characterization in terms of three forbidden vertex-minors. The three forbidden vertex-minors are the cycles $C_{5}, 6, C_{7}$, each with one additional vertex and some edges.

There exists $C_{2} M S$ formula that checks if given graph is a circle graph, but is not constructive.

Relational structures

With $w=a_{1} a_{2} \ldots a_{2 n}$ we associate the relational structure $S(w)=\langle\{1, \ldots, 2 n\}$, suc, slet \rangle where suc (i, j) holds if and only if $j=i+1$, with also $\operatorname{suc}(2 n, 1)$, and $\operatorname{slet}(i, j)$ holds if and only if $i \neq j$ and $a_{i}=a_{j}$, and the structure
$\bar{S}(w)=\langle\{1, \ldots, 2 n\}, \overline{s u c}$, slet \rangle where $\overline{s u c}=s u c \cup \operatorname{suc}^{-1}$.

Relational structures

With $w=a_{1} a_{2} \ldots a_{2 n}$ we associate the relational structure $S(w)=\langle\{1, \ldots, 2 n\}$, suc, slet \rangle where $\operatorname{suc}(i, j)$ holds if and only if $j=i+1$, with also $\operatorname{suc}(2 n, 1)$, and $\operatorname{slet}(i, j)$ holds if and only if
$i \neq j$ and $a_{i}=a_{j}$, and the structure
$\bar{S}(w)=\langle\{1, \ldots, 2 n\}, \overline{s u c}$, slet \rangle where $\overline{s u c}=s u c \cup \operatorname{suc}^{-1}$.
The mapping that associates $G(w)$ with $S(w)$ is an $M S$ transduction.

4-regular simple graphs

Lemma There exist two $M S$ transductions that associate with every connected 4-regular simple graph H :

1. a set of circuits with vertex set $V_{H} \times\{1,2\}$, that represent all Eulerian trails of H, and
2. the structures $\left\langle V_{H}, e d g_{H}, e d g_{G}(E)\right\rangle$ for all Eulerian trails E of H

Neighbours

Let w be a double occurrence word such that $G=G(w)$ is prime with at least 5 vertices, let $a, b \in V(w), a \neq b$. We say that a and b are neighbours in w if $w \equiv a b w^{\prime}$ for some w^{\prime} in A^{*}.

Neighbours

Let w be a double occurrence word such that $G=G(w)$ is prime with at least 5 vertices, let $a, b \in V(w), a \neq b$. We say that a and b are neighbours in w if $w \equiv a b w^{\prime}$ for some w^{\prime} in A^{*}.

For $a, b \in V_{G}(\subset A), a \neq b, u, v \in A-V_{G}$, we let $G(a, b ; u, v)$ be the graph G augmented with the path $a-u-v-b$.

Neighbours

Let w be a double occurrence word such that $G=G(w)$ is prime with at least 5 vertices, let $a, b \in V(w), a \neq b$. We say that a and b are neighbours in w if $w \equiv a b w^{\prime}$ for some w^{\prime} in A^{*}.

For $a, b \in V_{G}(\subset A), a \neq b, u, v \in A-V_{G}$, we let $G(a, b ; u, v)$ be the graph G augmented with the path $a-u-v-b$.

Fact $G(a, b ; u, v)$ is a circle graph if and only if a, b are neighbours in G

Neighbours

Let w be a double occurrence word such that $G=G(w)$ is prime with at least 5 vertices, let $a, b \in V(w), a \neq b$. We say that a and b are neighbours in w if $w \equiv a b w^{\prime}$ for some w^{\prime} in A^{*}.

For $a, b \in V_{G}(\subset A), a \neq b, u, v \in A-V_{G}$, we let $G(a, b ; u, v)$ be the graph G augmented with the path $a-u-v-b$.

Fact $G(a, b ; u, v)$ is a circle graph if and only if a, b are neighbours in G

Fact That a and b are neighbours in G is expressible by a $C_{2} M S$ formula.

Clique-width and tree-width

Theorem A set of connected circle graphs has bounded clique-width if and only if the set of its chord diagrams has bounded tree-width. More precisely, there exist functions f and g such that for every double occurrence word w, $t w d(S(w)) \leqslant f(\operatorname{cwd}(G(w)))$ and $c w d(G(w)) \leqslant g(t w d(S(w)))$.

References

1. B. Courcelle, Circle graphs and monadic second-order logic
2. W. Cunnigham, Decomposition of directed graphs
3. B. Courcelle, The monadic second-order logic of graphs XVI: Canonical graph decompositions
4. A. Bouchet, Reducing prime graphs and recognizing circle graphs
5. S. Oum, Rank-width and vertex minors
