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(k, d, p)-choosability

G is (k, d, p)-choosable if for every List assignment L, such that:

1. L(v) ­ k
2. |
⋃
L(v)| ¬ p

There exist list coloring such that maximum degree of monochromatic subgraph is d.
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G is (k, d, p)-choosable if for every List assignment L, such that:

1. L(v) ­ k
2. |
⋃
L(v)| ¬ p

There exist list coloring such that maximum degree of monochromatic subgraph is d.

examples:
1. (k, 0, k)-choosable = k-colorable
2. (k, 0, +∞)-choosable = k-choosable
3. (k, d, +∞)-choosable = d-defective k-choosable
4. (k, d, k)-choosable = d-defective k-colorable



Previous results

1. Every outerplanar graph is 2-defective 2-colorable (Cowen and Woodall)
2. Every planar graph is 2-defective 3-colorable (Cowen and Woodall)
3. Every planar graph is 2-defective 3-choosable (Eaton and Hull; Škrekovski)
4. Every outerplanar graph is 2-defective 2-choosable (Eaton and Hull; Škrekovski)
5. There are 4-choosable planar graphs that are not 1-defective 3-colorable (Wang and Xu)
6. For each l ­ k ­ 3, there exists a (k, 0, l)-choosable graph which is not
(k, 0, l + 1)-choosable
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5. There are 4-choosable planar graphs that are not 1-defective 3-colorable (Wang and Xu)
6. For each l ­ k ­ 3, there exists a (k, 0, l)-choosable graph which is not
(k, 0, l + 1)-choosable

Question 1(Wang and Xu) Is every 1-defective 3-choosable graph 4-choosable?

Theorem 2 There are 1-defective 3-choosable planar graphs that are not 4-choosable.

Question 2(Kang) Given positive integers k, d, does there exist an integer lk,d such that
every (k, d, lk,d )-choosable graph is (k, d, +∞)-choosable?



Previous results

1. Every outerplanar graph is 2-defective 2-colorable (Cowen and Woodall)
2. Every planar graph is 2-defective 3-colorable (Cowen and Woodall)
3. Every planar graph is 2-defective 3-choosable (Eaton and Hull; Škrekovski)
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Theorem 2 There are 1-defective 3-choosable planar graphs that are not 4-choosable.

Construction For a positive integer k, let T (k) be the graph obtained from the disjoint
union of k copies of T by identifying all the copies of top vertex and identifying all the copies
of the bottom vertex.

For k ­ 16 graph is not 4-choosable.

For k ¬ 26 G is 1-defective 3-choosable.

T T(k)



Lemma 7 Let L be a list assignment of T with L(u) = α, L(v) = β and |L(w)| ­ 3 for w
∈ V (T ) \ {u, v}. Then T has a 1-defective L-coloring φ such that λT (u, φ) = 0, and a
1-defective L-coloring φ such that λT (v, φ) = 0.

u

v

Lemma 6 Let L be a list assignment of T with L(u) = α, L(v) = β and |L(w)| ­ 3 for
w ∈ V (T ) \ {u, v}. If
- α = β, or
- α ̸= β and {α, β} ̸⊆ L(x) ∩ L(y) ∩ L(z), or
- α ̸= β and L(x) ∩ L(y) ∩ L(z)− {α, β} ≠ ∅,
then T has a 1-defective L-coloring φ such that λT (u, φ) = λT (v, φ) = 0.

{α}

{β}

x
y

z
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Lemma 6 Let L be a list assignment of T with L(u) = α, L(v) = β and |L(w)| ­ 3 for
w ∈ V (T ) \ {u, v}. If
- α = β, or
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- α ̸= β and L(x) ∩ L(y) ∩ L(z)− {α, β} ≠ ∅,
then T has a 1-defective L-coloring φ such that λT (u, φ) = λT (v, φ) = 0.

{α}

{β}

We have 26 copies of
graph T and there are 9
combinatons of α and β, so
from pigeonhole principle
we can find such α1 and
β1 that they don’t satisfy
assumtions of lemma 6 for
at most 2 graphs T.

x
y

z
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Definition G * d is a graph obtained from the disjoint union of G and |V (G)| copies of the
complete graph Kd , denoted as {Bv : v ∈ V (G)}, by identifying v with one vertex of Bv.

C5 ∗ 4
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Kk−1

H(t, d, k) H(t, d, k)
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((k−1)(d+1)
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)
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t copies

t = l + 2− k
v

Theorem 4 For any integers d ­ 0 and l ­ k ­ 3, there exists a (k, d, l)-choosable graph
which is not (k, d, l + 1)-choosable.

Construction

k copies



Construction of graph H(t, d, k)

Assume k ­ 3, t ­ 2, d ­ 0 and l = k − 2 + t. There exists a graph H(t, d, k) = (V, E) with
a precolored independent set T = {u1, u2, ..., ut} for which the following hold:
Assume the precoloring φ of T uses t distinct colors in [l + 1]. Then there is a k-list
assignment L of H(t, d, k) with L(v) ⊆ [l + 1] for each vertex v such that φ cannot be
extended to a d-defective coloring ψ of H(t, d, k) with λH(t,d,k)(ui, ψ) = 0 for each ui ∈ T .
On the other hand, if d ­ 1, then for any k-list assignment L of H(t, d, k)-T , φ can be
extended to a d-defective L-coloring ψ of H(t, d, k) such that λH(t,d,k)(ui, ψ) = 0 for
i = 1, 2, ..., t− 1 and λH(t,d,k)(ut, ψ) ¬ 1 .
Assume the precoloring φ of T uses with at most t-1 colors. Then for any k-list assignment L
of H(t, d, k)-T , ψ can be extended to a d-defective L-coloring φ of H(t, d, k) such that
λH(t,d,k)(ui, ψ) = 0 for each ui ∈ T .
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Further problems:

Graph is d-defective 1-choosable if and only if ∆(G) ¬ d so for k=1 Graph which is
(k, d, 1)-choosable is (k, d,+∞)-choosable.

What about k < 3?

For k=2 and d=0 it is known that (2, 0, 4)-choosable graphs are (2, 0,+∞)-choosable, for
d ­ 1 question remains open.

Is it true that for each k ­ 3, there exists a number l such that each (k, 0, l)- choosable
graph is (k + 1)-choosable?
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