On Two problems of Defective Choosability of Graphs

based on an article by Jie Ma, Rongxing Xu, Xuding Zhu

Katarzyna Kępińska

(k, d, p)-choosability

G is (k, d, p)-choosable if for every List assignment L, such that: 1. $L(v) \ge k$ 2. $|\bigcup L(v)| \le p$

There exist list coloring such that maximum degree of monochromatic subgraph is d.

2-defective 2-coloring (k, d, p)-choosability

G is (k, d, p)-choosable if for every List assignment L, such that: 1. $L(v) \ge k$ 2. $|\bigcup L(v)| \le p$

There exist list coloring such that maximum degree of monochromatic subgraph is d.

examples:

- 1. (k, 0, k)-choosable = k-colorable
- 2. (k, 0, $+\infty$)-choosable = k-choosable
- 3. (k, d, $+\infty$)-choosable = d-defective k-choosable
- 4. (k, d, k)-choosable = d-defective k-colorable

- 1. Every outerplanar graph is 2-defective 2-colorable (Cowen and Woodall)
- 2. Every planar graph is 2-defective 3-colorable (Cowen and Woodall)
- 3. Every planar graph is 2-defective 3-choosable (Eaton and Hull; Škrekovski)
- 4. Every outerplanar graph is 2-defective 2-choosable (Eaton and Hull; Škrekovski)
- 5. There are 4-choosable planar graphs that are not 1-defective 3-colorable (Wang and Xu)
- 6. For each $l \ge k \ge 3$, there exists a (k,0,l)-choosable graph which is not (k,0,l+1)-choosable

```
oodall)
krekovski)
ull; Škrekovski)
olorable (Wang and Xu)
is not
```

- 1. Every outerplanar graph is 2-defective 2-colorable (Cowen and Woodall)
- 2. Every planar graph is 2-defective 3-colorable (Cowen and Woodall)
- 3. Every planar graph is 2-defective 3-choosable (Eaton and Hull; Škrekovski)
- 4. Every outerplanar graph is 2-defective 2-choosable (Eaton and Hull; Škrekovski)
 5. There are 4-choosable planar graphs that are not 1-defective 3-colorable (Wang and Xu)
 6. For each l ≥ k ≥ 3, there exists a (k, 0, l)-choosable graph which is not
 - (k, 0, l+1)-choosable

```
oodall)
krekovski)
ull; Škrekovski)
olorable (Wang and Xu)
is not
```

1. Every outerplanar graph is 2-defective 2-colorable (Cowen and Woodall) 2. Every planar graph is 2-defective 3-colorable (Cowen and Woodall) 3. Every planar graph is 2-defective 3-choosable (Eaton and Hull; Škrekovski) 4. Every outerplanar graph is 2-defective 2-choosable (Eaton and Hull; Škrekovski) 5.) There are 4-choosable planar graphs that are not 1-defective 3-colorable (Wang and Xu) 6.) For each $l \ge k \ge 3$, there exists a (k, 0, l)-choosable graph which is not (k, 0, l+1)-choosable

Question 1(Wang and Xu) Is every 1-defective 3-choosable graph 4-choosable?

1. Every outerplanar graph is 2-defective 2-colorable (Cowen and Woodall) 2. Every planar graph is 2-defective 3-colorable (Cowen and Woodall) 3. Every planar graph is 2-defective 3-choosable (Eaton and Hull; Škrekovski) 4. Every outerplanar graph is 2-defective 2-choosable (Eaton and Hull; Škrekovski) 5.) There are 4-choosable planar graphs that are not 1-defective 3-colorable (Wang and Xu) 6.) For each $l \ge k \ge 3$, there exists a (k, 0, l)-choosable graph which is not (k, 0, l+1)-choosable

Question 1(Wang and Xu) Is every 1-defective 3-choosable graph 4-choosable?

Theorem 2 There are 1-defective 3-choosable planar graphs that are not 4-choosable.

1. Every outerplanar graph is 2-defective 2-colorable (Cowen and Woodall) 2. Every planar graph is 2-defective 3-colorable (Cowen and Woodall) 3. Every planar graph is 2-defective 3-choosable (Eaton and Hull; Škrekovski) 4. Every outerplanar graph is 2-defective 2-choosable (Eaton and Hull; Škrekovski) 5.) There are 4-choosable planar graphs that are not 1-defective 3-colorable (Wang and Xu) 6.) For each $l \ge k \ge 3$, there exists a (k, 0, l)-choosable graph which is not (k, 0, l+1)-choosable

Question 1(Wang and Xu) Is every 1-defective 3-choosable graph 4-choosable?

Theorem 2 There are 1-defective 3-choosable planar graphs that are not 4-choosable.

Question 2(Kang) Given positive integers k, d, does there exist an integer $l_{k,d}$ such that every (k, d, $l_{k,d}$)-choosable graph is (k, d, $+\infty$)-choosable?

1. Every outerplanar graph is 2-defective 2-colorable (Cowen and Woodall) 2. Every planar graph is 2-defective 3-colorable (Cowen and Woodall) 3. Every planar graph is 2-defective 3-choosable (Eaton and Hull; Škrekovski) 4. Every outerplanar graph is 2-defective 2-choosable (Eaton and Hull; Škrekovski) 5.) There are 4-choosable planar graphs that are not 1-defective 3-colorable (Wang and Xu) 6.) For each $l \ge k \ge 3$, there exists a (k, 0, l)-choosable graph which is not (k, 0, l+1)-choosable

Question 1(Wang and Xu) Is every 1-defective 3-choosable graph 4-choosable?

Theorem 2 There are 1-defective 3-choosable planar graphs that are not 4-choosable.

Question 2(Kang) Given positive integers k, d, does there exist an integer $l_{k,d}$ such that every (k, d, $l_{k,d}$)-choosable graph is (k, d, $+\infty$)-choosable?

Theorem 4 For any integers $d \ge 0$ and $l \ge k \ge 3$, there exists a (k, d, l)-choosable graph which is not (k, d, l + 1)-choosable.

Construction For a positive integer k, let T (k) be the graph obtained from the disjoint union of k copies of T by identifying all the copies of top vertex and identifying all the copies of the bottom vertex.

Construction For a positive integer k, let T (k) be the graph obtained from the disjoint union of k copies of T by identifying all the copies of top vertex and identifying all the copies of the bottom vertex.

For $k \ge 16$ graph is not 4-choosable.

Construction For a positive integer k, let T (k) be the graph obtained from the disjoint union of k copies of T by identifying all the copies of top vertex and identifying all the copies of the bottom vertex.

For $k \ge 16$ graph is not 4-choosable.

For $k \leq 26$ G is 1-defective 3-choosable.

Lemma 6 Let L be a list assignment of T with $L(u) = \alpha$, $L(v) = \beta$ and $|L(w)| \ge 3$ for $w \in V(T) \setminus \{u, v\}$. If - $\alpha = \beta$, or - $\alpha \neq \beta$ and $\{\alpha, \beta\} \not\subseteq L(x) \cap L(y) \cap L(z)$, or - $\alpha \neq \beta$ and $L(x) \cap L(y) \cap L(z) - \{\alpha, \beta\} \neq \emptyset$, then T has a 1-defective L-coloring ϕ such that $\lambda_T(u, \phi) = \lambda_T(v, \phi) = 0$. **Lemma 7** Let L be a list assignment of T with $L(u) = \alpha$, $L(v) = \beta$ and $|L(w)| \ge 3$ for w $\in V(T) \setminus \{u, v\}$. Then T has a 1-defective L-coloring ϕ such that $\lambda_T(u, \phi) = 0$, and a 1-defective L-coloring ϕ such that $\lambda_T(v, \phi) = 0$.

Lemma 6 Let L be a list assignment of T with $L(u) = \alpha$, $L(v) = \beta$ and $|L(w)| \ge 3$ for $w \in V(T) \setminus \{u, v\}$. If - $\alpha = \beta$, or - $\alpha \neq \beta$ and $\{\alpha, \beta\} \not\subseteq L(x) \cap L(y) \cap L(z)$, or - $\alpha \neq \beta$ and $L(x) \cap L(y) \cap L(z) - \{\alpha, \beta\} \neq \emptyset$, then T has a 1-defective L-coloring ϕ such that $\lambda_T(u,\phi) = \lambda_T(v,\phi)$ **Lemma 7** Let L be a list assignment of T with $L(u) = \alpha$, $L(v) = \beta$ $\in V(T) \setminus \{u, v\}$. Then T has a 1-defective L-coloring ϕ such that λ_T 1-defective L-coloring ϕ such that $\lambda_T(v, \phi) = 0$.

$$= 0.$$

and $|L(w)| \geqslant$ 3 for w $_{\Gamma}(u,\phi) =$ 0, and a

We have 26 copies of graph T and there are 9 combinatons of α and β , so from pigeonhole principle we can find such α_1 and β_1 that they don't satisfy assumtions of lemma 6 for at most 2 graphs T.

Theorem 4 For any integers $d \ge 0$ and $l \ge k \ge 3$, there exists a (k, d, l)-choosable graph which is not (k, d, l + 1)-choosable.

 $K_{(d+1)k}$

 $d = 2, k = 3, K_{(2+1)3}$

Theorem 4 For any integers $d \ge 0$ and $l \ge k \ge 3$, there exists a (k, d, l)-choosable graph which is not (k, d, I + 1)-choosable.

 $K_{(d+1)k}$

 $d = 2, k = 3, K_{(2+1)3}$

Theorem 4 For any integers $d \ge 0$ and $l \ge k \ge 3$, there exists a (k, d, l)-choosable graph which is not (k, d, I + 1)-choosable.

 $K_{(d+1)k}$

 $d = 2, k = 3, K_{(2+1)3}$

Definition G * d is a graph obtained from the disjoint union of G and |V(G)| copies of the complete graph K_d , denoted as $\{B_v : v \in V(G)\}$, by identifying v with one vertex of B_v .

Definition G * d is a graph obtained from the disjoint union of G and |V(G)| copies of the complete graph K_d , denoted as $\{B_v : v \in V(G)\}$, by identifying v with one vertex of B_v .

Not 1-defective 2-colorable

Definition G * d is a graph obtained from the disjoint union of G and |V(G)| copies of the complete graph K_d , denoted as $\{B_v : v \in V(G)\}$, by identifying v with one vertex of B_v .

Not 1-defective 2-colorable

Theorem 4 For any integers $d \ge 0$ and $l \ge k \ge 3$, there exists a (k, d, l)-choosable graph which is not (k, d, l + 1)-choosable.

Construction

Construction of graph H(t, d, k)

Assume $k \ge 3$, $t \ge 2$, $d \ge 0$ and l = k - 2 + t. There exists a graph H(t, d, k) = (V, E) with a precolored independent set $T = \{u_1, u_2, ..., u_t\}$ for which the following hold:

Assume the precoloring ϕ of T uses t distinct colors in [1 + 1]. Then there is a k-list assignment L of H(t, d, k) with $L(v) \subseteq [l+1]$ for each vertex v such that ϕ cannot be extended to a d-defective coloring ψ of H(t, d, k) with $\lambda_{H(t,d,k)}(u_i,\psi) = 0$ for each $u_i \in T$. On the other hand, if $d \ge 1$, then for any k-list assignment L of H(t, d, k)-T, ϕ can be extended to a d-defective L-coloring ψ of H(t, d, k) such that $\lambda_{H(t,d,k)}(u_i,\psi) = 0$ for i = 1, 2, ..., t - 1 and $\lambda_{H(t,d,k)}(u_t, \psi) \leqslant 1$.

Assume the precoloring ϕ of T uses with at most t-1 colors. Then for any k-list assignment L of H(t, d, k)-T, ψ can be extended to a d-defective L-coloring ϕ of H(t, d, k) such that $\lambda_{H(t,d,k)}(u_i,\psi) = 0$ for each $u_i \in T$.

Theorem 4 For any integers $d \ge 0$ and $l \ge k \ge 3$, there exists a (k, d, l)-choosable graph which is not (k, d, l + 1)-choosable.

Construction

What about k < 3?

What about k < 3?

Graph is d-defective 1-choosable if and only if $\Delta(G) \leq d$ so for k=1 Graph which is (k, d, 1)-choosable is $(k, d, +\infty)$ -choosable.

What about k < 3?

Graph is d-defective 1-choosable if and only if $\Delta(G) \leq d$ so for k=1 Graph which is (k, d, 1)-choosable is $(k, d, +\infty)$ -choosable.

For k=2 and d=0 it is known that (2, 0, 4)-choosable graphs are $(2, 0, +\infty)$ -choosable, for $d \ge 1$ question remains open.

What about k < 3?

Graph is d-defective 1-choosable if and only if $\Delta(G) \leq d$ so for k=1 Graph which is (k, d, 1)-choosable is $(k, d, +\infty)$ -choosable.

For k=2 and d=0 it is known that (2, 0, 4)-choosable graphs are $(2, 0, +\infty)$ -choosable, for $d \ge 1$ question remains open.

Is it true that for each $k \ge 3$, there exists a number I such that each (k, 0, l)- choosable graph is (k+1)-choosable?

References:

- 1. Jie Ma, Rongxing Xu, Xuding Zhu. On Two problems of Defective Choosability of Graphs.
- 2. L. J. Cowen, R. H. Cowen, and D. R. Woodall. Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency.
- 3. N. Eaton and T. Hull. Defective list colorings of planar graphs.
- 4. R. Škrekovski. List improper colourings of planar graphs.
- 5. Y. Wang and L. Xu. Improper choosability of planar graphs without 4-cycles.