Any 7-chromatic graph has K_{7} or $K_{4,4}$ as a minor based on an aricle by Ken-Ichi Kawarabayashi and Bjarne Toft

Izabela Tylek

November 23, 2023

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)
Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

 Definitionsk-chromatic graph
A graph is called k-chromatic if its chromatic number is equal to k

The Hadwiger conjecture

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

A minor of an undirected graph G is any graph that may be obtained from G by a sequence of zero or more contractions of edges and deletions of edges and vertices

The Hadwiger conjecture

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

A minor of an undirected graph G is any graph that may be obtained from G by a sequence of zero or more contractions of edges and deletions of edges and vertices

The Hadwiger conjecture

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

A minor of an undirected graph G is any graph that may be obtained from G by a sequence of zero or more contractions of edges and deletions of edges and vertices

The Hadwiger conjecture

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

A minor of an undirected graph G is any graph that may be obtained from G by a sequence of zero or more contractions of edges and deletions of edges and vertices

The Hadwiger conjecture

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

A minor of an undirected graph G is any graph that may be obtained from G by a sequence of zero or more contractions of edges and deletions of edges and vertices

The Hadwiger conjecture

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

A minor of an undirected graph G is any graph that may be obtained from G by a sequence of zero or more contractions of edges and deletions of edges and vertices

The Hadwiger conjecture

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

A minor of an undirected graph G is any graph that may be obtained from G by a sequence of zero or more contractions of edges and deletions of edges and vertices

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Conjecture (Hugo Hadwiger, 1943)

Every k-chromatic graph has a K_{k}-minor

The Hadwiger conjecture

Trivial cases

- $k=2$

A graph requires more than one colour if and only if it has an edge

- $k=3$

A graph requires more than two colours if and only if it is not bipartite. Every non-bipartite graph contains an odd cycle, which can be contracted to a 3-cycle

Hadwiger conjecture

Solved cases

- $k=4$

Theorem (Hugo Hadwiger, 1943)
Every 4-chromatic graph has a K_{4} minor

Hadwiger conjecture

- $k=5$

Theorem (Klaus Wagner, 1937)

A graph is planar if and only if its minors include neither K_{5} nor $K_{3,3}$
So the Hadwiger conjecture for $k=5$ implies the Four Colour Theorem (if all 5-chromatic have to contain K_{5}, they cannot be planar)

Theorem (Klaus Wagner, 1937)

Every graph that has no K_{5} minor can be decomposed via clique-sums into pieces that are either planar or an 8-vertex Möbius ladder and each of the pieces can be 4-coloured independently of each other

So the Four Colour Theorem implies the Hadwiger conjecture for $k=5$ (K_{5}-minor-free graphs are 4-colourable)

Hadwiger conjecture

- $k=6$

Theorem (Robertson, Seymour \& Thomas, 1993; 1994 Fulkerson Prize)

A minimal counterexample to the Hadwiger conjecture for the case $k=6$ is a graph G which has a vertex v such that $G-v$ is planar (and therefore, assuming the Four Colour Theorem holds, there are no counterexamples)

[^0]
Hadwiger conjecture
 Partial results for further cases

Theorem (Bollobás, Catlin \& Erdős, 1980)

The Hadwiger conjecture in general is true for almost all graphs

Theorem (Zi-Xia Song, 2010)

The Hadwiger conjecture is true for all graphs with "claw-free" or $\overline{K_{1,3}}$-free degree sequences

A graph is a claw if it is isomorphic to $K_{1,3}$
A degree sequence is H-free if each realisation of the sequence is H-free

Theorem (Jakobsen, 1971)

Every 7-chromatic graph has a K_{7} with two edges missing as a minor

Hadwiger conjecture
 Partial results for further cases

Theorem(Kawarabayashi \& Toft, 2005))

Every 7-chromatic graph has to contain a K_{7}-minor or a $K_{4,4}$-minor

Theorem(Kawarabayashi)

Every 7 -chromatic graph has to contain a K_{7}-minor or both a $K_{4,4}$-minor and a $K_{3,5}$-minor

Outline of the paper

Let G be a graph satisfying the following conditions:

- G is 7 -chromatic
- G is minimal with respect to the minor relation in the class of all 7-chromatic graphs
- G does not contain K_{7} as a minor
- G does not contain $K_{4,4}$ as a minor

These conditions together lead to a contradiction

Outline of the paper

(1) Contraction-criticality and general properties of the graph
(2) Non-planarity of G minus two vertices
(3) Forbidden relations between complete 5-graphs in G
(4) Finding three "nearly disjoint" complete 5-graphs
(5) Finding K_{7} or $K_{4,4}$ using the "nearly disjoint" complete 5-graphs

Contraction-critical graphs

Contraction-critical graph

A graph H is k-contraction-critical if it is k-chromatic and every proper minor of H has a proper $(k-1)$-colouring

Contraction-critical graphs

Contraction-critical graph

A graph H is k-contraction-critical if it is k-chromatic and every proper minor of H has a proper $(k-1)$-colouring

- G is 7 -chromatic
- G is minimal with respect to the minor relation in the class of all 7-chromatic graphs
- G does not contain K_{7} as a minor
G is a non-complete 7-contraction-critical graph

Properties of contraction-critical graphs

The following results apply to non-complete 7-contraction-critical graphs

Lemma 1 (Dirac)

$\delta(G) \geq 7$ and no three neighbors of a degree 7 vertex are independent

Lemma 2 (Dirac)

G does not contain a K_{6}

Lemma 3 (Mader)

G is 7-connected

Lemma 4 (Stiebitz, Toft)

G has at least three vertices of degree at least 8

Properties of G

Theorem (Jørgensen)

Every 4-connected graph G with $|E(G)| \geq 4|V(G)|-7$ has a $K_{4,4}$-minor or is a K_{7}

Lemma 5 (from lemma 3)
$|E(G)| \leq 4|V(G)|-8$
Lemma 6 (from lemmas 1 and 5)
G has at least 16 vertices of degree 7
Lemma 7 (from lemmas 4 and 6)

$$
|V(G)| \geq 19
$$

Lemma 8 (from lemma 3 and the fact that we have no $K_{4,4}$-minor) G does not contain a $K_{3,4}$

Properties of G

Lemma 9 For any vertex x of degree $7,\left[N_{G}(x)\right]$ is a graph containing either disjoint complete graphs K_{3} and K_{4} or a 7-vertex inflation of a 5-cycle where two neighboring vertices are replaced by complete 2-graphs

Lemma 10 (from lemma 9)
Any vertex of degree 7 in G is contained in a K_{5} in G
Lemma 11 (from lemmas 6 and 9)
G contains at least four different complete graphs on five vertices

Properties of G

Lemma 9 For any vertex x of degree $7,\left[N_{G}(x)\right]$ is a graph containing either disjoint complete graphs K_{3} and K_{4} or a 7 -vertex inflation of a 5-cycle where two neighboring vertices are replaced by complete 2-graphs

Lemma 10 (from lemma 9)
Any vertex of degree 7 in G is contained in a K_{5} in G
Lemma 11 (from lemmas 6 and 9)
G contains at least four different complete graphs on five vertices

Properties of G

Lemma 9 For any vertex x of degree $7,\left[N_{G}(x)\right]$ is a graph containing either disjoint complete graphs K_{3} and K_{4} or a 7-vertex inflation of a 5-cycle where two neighboring vertices are replaced by complete 2-graphs

Lemma 10 (from lemma 9)
Any vertex of degree 7 in G is contained in a K_{5} in G
Lemma 11 (from lemmas 6 and 9)
G contains at least four different complete graphs on five vertices

Non-planarity of G minus two vertices

Let us take some two distinct vertices $x, y \in V(G)$ and assume that $G^{\prime}=G-x-y$ is planar

- G^{\prime} has to have at least 12 vertices of degree 5 , and these vertices have degree 7 in G

Non-planarity of G minus two vertices

Let us take some two distinct vertices $x, y \in V(G)$ and assume that $G^{\prime}=G-x-y$ is planar

- G^{\prime} has to have at least 12 vertices of degree 5 , and these vertices have degree 7 in G

$$
\begin{aligned}
& \text { Lemma } 1 \delta(G) \geq 7 \text { and no three neighbors of a degree } 7 \\
& \text { vertex are independent } \\
& \text { Lemma } 3 G \text { is 7-connected }
\end{aligned}
$$

Since G^{\prime} is 5 -connected and $\delta(G) \geq 5$, there at least 12 vertices of degree 5 in G^{\prime} (by Euler's formula) that have degree 7 in G

Non-planarity of G minus two vertices

Let us take some two distinct vertices $x, y \in V(G)$ and assume that $G^{\prime}=G-x-y$ is planar

- G^{\prime} has to have at least 12 vertices of degree 5 , and these vertices have degree 7 in G
- There is no K_{4} in G^{\prime}

Non-planarity of G minus two vertices

Let us take some two distinct vertices $x, y \in V(G)$ and assume that $G^{\prime}=G-x-y$ is planar

- G^{\prime} has to have at least 12 vertices of degree 5 , and these vertices have degree 7 in G
- There is no K_{4} in G^{\prime}

Non-planarity of G minus two vertices

Let us take some two distinct vertices $x, y \in V(G)$ and assume that $G^{\prime}=G-x-y$ is planar

- G^{\prime} has to have at least 12 vertices of degree 5 , and these vertices have degree 7 in G
- There is no K_{4} in G^{\prime}

Non-planarity of G minus two vertices

Let us take some two distinct vertices $x, y \in V(G)$ and assume that $G^{\prime}=G-x-y$ is planar

- G^{\prime} has to have at least 12 vertices of degree 5 , and these vertices have degree 7 in G
- There is no K_{4} in G^{\prime}

Non-planarity of G minus two vertices

Let us take some two distinct vertices $x, y \in V(G)$ and assume that $G^{\prime}=G-x-y$ is planar

- G^{\prime} has to have at least 12 vertices of degree 5 , and these vertices have degree 7 in G
- There is no K_{4} in G^{\prime}
- Any K_{5} contains both x and y, every vertex of degree 7 is connected to x and y and has no triangle in its neighborhood

Non-planarity of G minus two vertices

- We can find two non-neighboring vertices z_{1} and z_{2} of degree 7 in G that form a following structure in G^{\prime} :

Where the arcs signify some paths (possibly of length 0)

Non-planarity of G minus two vertices

- We can find two non-neighboring vertices z_{1} and z_{2} of degree 7 in G that form a following structure in G^{\prime} :

Where the arcs signify some paths (possibly of length 0)

- If the highlighted subgraphs are disjoint, the structure contains a $K_{4,4}$ minor

Non-planarity of G minus two vertices

- We can find two non-neighboring vertices z_{1} and z_{2} of degree 7 in G that form a following structure in G^{\prime} :

Where the arcs signify some paths (possibly of length 0)

- We can always find two vertices z_{1} and z_{2} such that the graphs are in fact disjoint

Forbidden relations between complete 5-graphs in G

Lemma 11 G contains at least four different complete graphs on five vertices

Let L_{1}, L_{2}, L_{3} be three K_{5}, not necessarily disjoint, but not same It is possible to prove that the following configurations are not possible:

(We rely on the fact that the graph is non-planar and some previous results from Robertson, Seymour and Thomas)

Finding three "nearly disjoint" complete 5-graphs

We want to prove that L_{1}, L_{2}, L_{3} can be selected such that $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 12$
Let L_{1}, L_{2} be two K_{5} that maximise $\left|L_{1} \cup L_{2}\right|$
Claim $1\left|L_{1} \cup L_{2}\right| \geq 9$
Claim $2\left|L_{1} \cup L_{2}\right|=10$ (and so $L_{1} \cap L_{2}=\varnothing$)
Lemma L_{1}, L_{2}, L_{3} can be selected such that $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 12$

Finding K_{7} or $K_{4,4}$ using the "nearly disjoint" complete 5-graphs

Good paths

Let Z_{1}, \ldots, Z_{h} be subsets of $V(G)$. A path P of G with ends u, v is said to be good if there exist distinct i, j with $1 \leq i, j \leq h$ such that $u \in Z_{i}$ and $v \in Z_{j}$

Finding K_{7} or $K_{4,4}$ using the "nearly disjoint" complete 5-graphs

Theorem (Robertson, Seymour and Thomas; based on Mader's "H-Wedge" theorem)

Let G be a graph, let Z_{1}, \ldots, Z_{h} be subsets of $V(G)$, and let $K \leq 0$ be an integer. Then exactly one of the following two statements holds:
(1) There are k mutually disjoint good paths of G
(2) There exists a vertex set $W \subseteq V(G)$ and a partition Y_{1}, \ldots, Y_{n} of $V(G)-W$, and for $1 \leq i \leq n$ a subset $X_{i} \subseteq Y_{i}$ such that
(1) $|W|+\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor<k$
(2) for any i with $1 \leq i \leq n$, no vertex in $Y_{i}-X_{i}$ has a neighbor in $V(G)-\left(W \cup Y_{i}\right)$ and $Y_{i} \cap\left(\cup_{j=1}^{h} Z_{j}\right) \subseteq X_{i}$, and
(3) every good path P in $G-W$ has an edge with both ends in Y_{i} for some i

Finding K_{7} or $K_{4,4}$ using the "nearly disjoint" complete 5-graphs

Let us take $Z_{1}, \ldots, Z_{3}=L_{1}, \ldots, L_{3}$

Claim 1 There do not exist seven mutually disjoint good paths in G

For any possible $i, j: N_{L}\left(P_{i}\right) \cap V\left(P_{j}\right) \neq \varnothing$ Therefore $\left(V\left(P_{1}\right), V\left(P_{2}\right), V\left(P_{3}\right), V\left(P_{5}\right), V\left(P_{6}\right), V\left(P_{7}\right)\right)$ is a K_{7}-minor, contradiction

Finding K_{7} or $K_{4,4}$ using the "nearly disjoint" complete 5-graphs

Claim 2 There exists no set matching the conditions of the second case of H-Wedge theorem

Finding K_{7} or $K_{4,4}$ using the "nearly disjoint" complete 5-graphs

Claim 2 There exists no set matching the conditions of the second case of H-Wedge theorem
There are six possibilities of configurations of K_{5} :

Finding K_{7} or $K_{4,4}$ using the "nearly disjoint" complete 5-graphs

Claim 2 There exists no set matching the conditions of the second case of H-Wedge theorem
There are six possibilities of configurations of K_{5} :

...and therefore get a contradiction

References

- Kawarabayashi, Ki., Toft, B. Any 7-Chromatic Graphs Has K 7 Or K 4,4 As A Minor. Combinatorica 25, 327-353 (2005). https://doi.org/10.1007/s00493-005-0019-1
- https://en.wikipedia.org/wiki/Hadwiger_conjecture_(graph_theory)
- https://web.archive.org/web/20100531115635id/http : //www.math.ucf.edu/ zxsong/PAP/claw - free.pdf
- Hadwiger's Conjecture is True for Almost Every Graph: https://doi.org/10.1016/S0195-6698(80)80001-1
- N. Robertson, P. D. Seymour and R. Thomas, Hadwiger's conjecture for K6-free graphs, Combinatorica 13 (1993) 279-361.

[^0]: Proof using linklessly embeddable graphs (three-dimensional analogue of planar graphs)

