Any 7-chromatic graph has K_7 or $K_{4,4}$ as a minor based on an aricle by Ken-Ichi Kawarabayashi and Bjarne Toft

Izabela Tylek

November 23, 2023

November 23, 2023

1/25

Conjecture (Hugo Hadwiger, 1943)

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

Definitions

k-chromatic graph

A graph is called k-chromatic if its chromatic number is equal to k

Minor

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

Conjecture (Hugo Hadwiger, 1943)

• *k* = 2

A graph requires more than one colour if and only if it has an edge

• *k* = 3

A graph requires more than two colours if and only if it is not bipartite. Every non-bipartite graph contains an odd cycle, which can be contracted to a 3-cycle

Theorem (Hugo Hadwiger, 1943)

Every 4-chromatic graph has a K_4 minor

э

• *k* = 5

Theorem (Klaus Wagner, 1937)

A graph is planar if and only if its minors include neither K_5 nor $K_{3,3}$

So the Hadwiger conjecture for k = 5 implies the Four Colour Theorem (if all 5-chromatic have to contain K_5 , they cannot be planar)

Theorem (Klaus Wagner, 1937)

Every graph that has no K_5 minor can be decomposed via clique-sums into pieces that are either planar or an 8-vertex Möbius ladder and each of the pieces can be 4-coloured independently of each other

So the Four Colour Theorem implies the Hadwiger conjecture for k = 5 (K_5 -minor-free graphs are 4-colourable)

• *k* = 6

Theorem (Robertson, Seymour & Thomas, 1993; 1994 Fulkerson Prize)

A minimal counterexample to the Hadwiger conjecture for the case k = 6 is a graph *G* which has a vertex *v* such that G - v is planar (and therefore, assuming the Four Colour Theorem holds, there are no counterexamples)

Proof using linklessly embeddable graphs (three-dimensional analogue of planar graphs)

Theorem (Bollobás, Catlin & Erdős, 1980)

The Hadwiger conjecture in general is true for almost all graphs

Theorem (Zi-Xia Song, 2010)

The Hadwiger conjecture is true for all graphs with "claw-free" or $\overline{K_{1,3}}$ -free degree sequences

A graph is a claw if it is isomorphic to $K_{1,3}$ A degree sequence is *H*-free if each realisation of the sequence is *H*-free

Theorem (Jakobsen, 1971)

Every 7-chromatic graph has a K_7 with two edges missing as a minor

イロト イヨト イヨト ・

Theorem(Kawarabayashi & Toft, 2005))

Every 7-chromatic graph has to contain a K_7 -minor or a $K_{4,4}$ -minor

Theorem(Kawarabayashi)

Every 7-chromatic graph has to contain a K_7 -minor or both a $K_{4,4}$ -minor and a $K_{3,5}$ -minor

Let G be a graph satisfying the following conditions:

- *G* is 7-chromatic
- *G* is minimal with respect to the minor relation in the class of all 7-chromatic graphs
- G does not contain K_7 as a minor
- G does not contain $K_{4,4}$ as a minor

These conditions together lead to a contradiction

Contraction-criticality and general properties of the graph

- 2 Non-planarity of G minus two vertices
- 3 Forbidden relations between complete 5-graphs in G
- Finding three "nearly disjoint" complete 5-graphs
- **5** Finding K_7 or $K_{4,4}$ using the "nearly disjoint" complete 5-graphs

Contraction-critical graph

A graph H is k-contraction-critical if it is k-chromatic and every proper minor of H has a proper (k - 1)-colouring

Contraction-critical graph

A graph H is k-contraction-critical if it is k-chromatic and every proper minor of H has a proper (k - 1)-colouring

- *G* is 7-chromatic
- *G* is minimal with respect to the minor relation in the class of all 7-chromatic graphs
- G does not contain K_7 as a minor
- G is a non-complete 7-contraction-critical graph

Properties of contraction-critical graphs

The following results apply to non-complete 7-contraction-critical graphs

Lemma 1 (Dirac) $\delta(G) \ge 7$ and no three neighbors of a degree 7 vertex are independent

Lemma 2 (Dirac)

G does not contain a K_6

Lemma 3 (Mader)

G is 7-connected

Lemma 4 (Stiebitz, Toft)

G has at least three vertices of degree at least 8

Theorem (Jørgensen)

Every 4-connected graph G with $|E(G)| \ge 4|V(G)| - 7$ has a $K_{4,4}$ -minor or is a K_7

- Lemma 5 (from lemma 3) $|E(G)| \le 4|V(G)| - 8$
- Lemma 6 (from lemmas 1 and 5) G has at least 16 vertices of degree 7
- Lemma 7 (from lemmas 4 and 6) $|V(G)| \ge 19$
- Lemma 8 (from lemma 3 and the fact that we have no $K_{4,4}$ -minor) G does not contain a $K_{3,4}$

Properties of G

vertices

Lemma 9 For any vertex x of degree 7, $[N_G(x)]$ is a graph containing either disjoint complete graphs K_3 and K_4 or a 7-vertex inflation of a 5-cycle where two neighboring vertices are replaced by complete 2-graphs

Lemma 10 (from lemma 9) Any vertex of degree 7 in G is contained in a K_5 in G Lemma 11 (from lemmas 6 and 9) G contains at least four different complete graphs on five

November 23, 2023 16 / 25

Properties of G

Lemma 9 For any vertex x of degree 7, $[N_G(x)]$ is a graph containing either disjoint complete graphs K_3 and K_4 or a 7-vertex inflation of a 5-cycle where two neighboring vertices are replaced by complete 2-graphs

Lemma 10 (from lemma 9) Any vertex of degree 7 in G is contained in a K_5 in G Lemma 11 (from lemmas 6 and 9)

 ${\cal G}$ contains at least four different complete graphs on five vertices

Properties of G

vertices

Lemma 9 For any vertex x of degree 7, $[N_G(x)]$ is a graph containing either disjoint complete graphs K_3 and K_4 or a 7-vertex inflation of a 5-cycle where two neighboring vertices are replaced by complete 2-graphs

Lemma 10 (from lemma 9) Any vertex of degree 7 in G is contained in a K_5 in G Lemma 11 (from lemmas 6 and 9) G contains at least four different complete graphs on five

November 23, 2023 16 / 25

Let us take some two distinct vertices $x, y \in V(G)$ and assume that G' = G - x - y is planar

• G' has to have at least 12 vertices of degree 5, and these vertices have degree 7 in G

Let us take some two distinct vertices $x, y \in V(G)$ and assume that G' = G - x - y is planar

• G' has to have at least 12 vertices of degree 5, and these vertices have degree 7 in G

Lemma 1 $\delta(G) \ge 7$ and no three neighbors of a degree 7 vertex are independent

Lemma 3 G is 7-connected

Since G' is 5-connected and $\delta(G) \ge 5$, there at least 12 vertices of degree 5 in G' (by Euler's formula) that have degree 7 in G

- G' has to have at least 12 vertices of degree 5, and these vertices have degree 7 in G
- There is no K_4 in G'

- G' has to have at least 12 vertices of degree 5, and these vertices have degree 7 in G
- There is no K_4 in G'

- G' has to have at least 12 vertices of degree 5, and these vertices have degree 7 in G
- There is no K_4 in G'

- G' has to have at least 12 vertices of degree 5, and these vertices have degree 7 in G
- There is no K_4 in G'

- G' has to have at least 12 vertices of degree 5, and these vertices have degree 7 in G
- There is no K_4 in G'
- Any K₅ contains both x and y, every vertex of degree 7 is connected to x and y and has no triangle in its neighborhood

• We can find two non-neighboring vertices z_1 and z_2 of degree 7 in G that form a following structure in G':

Where the arcs signify some paths (possibly of length 0)

• We can find two non-neighboring vertices z_1 and z_2 of degree 7 in G that form a following structure in G':

Where the arcs signify some paths (possibly of length 0)

• If the highlighted subgraphs are disjoint, the structure contains a ${\it K}_{4,4}$ minor

• We can find two non-neighboring vertices z_1 and z_2 of degree 7 in G that form a following structure in G':

Where the arcs signify some paths (possibly of length 0)

• We can always find two vertices z_1 and z_2 such that the graphs are in fact disjoint

Lemma 11 *G* contains at least four different complete graphs on five vertices

Let L_1, L_2, L_3 be three K_5 , not necessarily disjoint, but not same It is possible to prove that the following configurations are not possible:

(We rely on the fact that the graph is non-planar and some previous results from Robertson, Seymour and Thomas)

We want to prove that L_1, L_2, L_3 can be selected such that $|L_1 \cup L_2 \cup L_3| \ge 12$ Let L_1, L_2 be two K_5 that maximise $|L_1 \cup L_2|$ Claim 1 $|L_1 \cup L_2| \ge 9$ Claim 2 $|L_1 \cup L_2| = 10$ (and so $L_1 \cap L_2 = \emptyset$) Lemma L_1, L_2, L_3 can be selected such that $|L_1 \cup L_2 \cup L_3| \ge 12$

Good paths

Let $Z_1, ..., Z_h$ be subsets of V(G). A path P of G with ends u, v is said to be good if there exist distinct i, j with $1 \le i, j \le h$ such that $u \in Z_i$ and $v \in Z_j$

Theorem (Robertson, Seymour and Thomas; based on Mader's "H-Wedge" theorem)

Let G be a graph, let $Z_1, ..., Z_h$ be subsets of V(G), and let $K \leq 0$ be an integer. Then exactly one of the following two statements holds:

- There are k mutually disjoint good paths of G
- There exists a vertex set W ⊆ V(G) and a partition Y₁,..., Y_n of V(G) W, and for 1 ≤ i ≤ n a subset X_i ⊆ Y_i such that
 - $|W| + \sum_{1 \le i \le n} \lfloor \frac{1}{2} |X_i| \rfloor < k$
 - ② for any *i* with $1 \le i \le n$, no vertex in $Y_i X_i$ has a neighbor in $V(G) (W \cup Y_i)$ and $Y_i \cap (\cup_{i=1}^h Z_i) \subseteq X_i$, and
 - every good path P in G W has an edge with both ends in Y_i for some i

Let us take $Z_1, ..., Z_3 = L_1, ..., L_3$

Claim 1 There do not exist seven mutually disjoint good paths in G

For any possible $i, j: N_L(P_i) \cap V(P_j) \neq \emptyset$ Therefore $(V(P_1), V(P_2), V(P_3), V(P_5), V(P_6), V(P_7))$ is a K_7 -minor, contradiction

Claim 2 There exists no set matching the conditions of the second case of H-Wedge theorem

- Claim 2 There exists no set matching the conditions of the second case of H-Wedge theorem
- There are six possibilities of configurations of K_5 :

- Claim 2 There exists no set matching the conditions of the second case of H-Wedge theorem
- There are six possibilities of configurations of K_5 :

...and therefore get a contradiction

- Kawarabayashi, Ki., Toft, B. Any 7-Chromatic Graphs Has K 7 Or K 4,4 As A Minor. Combinatorica 25, 327–353 (2005). https://doi.org/10.1007/s00493-005-0019-1
- https://en.wikipedia.org/wiki/Hadwiger_conjecture_(graph_theory)
- https://web.archive.org/web/20100531115635id/http: //www.math.ucf.edu/ zxsong/PAP/claw - free.pdf
- Hadwiger's Conjecture is True for Almost Every Graph: https://doi.org/10.1016/S0195-6698(80)80001-1
- N. Robertson, P. D. Seymour and R. Thomas, Hadwiger's conjecture for K6-free graphs, Combinatorica 13 (1993) 279-361.