On the equitable distribution of points on the circle

Hamza Barakat Habib

Slides by: Jan Klimczak

$$
30.11 .2023
$$

Problem Definition

Suppose that we have a stick of unit length that represents some resource, that we want to fairly distribute between unknown amount of people. At any moment in time, the resource will be fully divided between people (there is no amount of resources not assigned to someone).

If we know the amount of people N in advance, we would give $1 / N$-th of resource to everyone. Suppose that amount of people is not known beforehand. To create even distribution, it would be necessary to take a fraction of resources from everyone upon the arrival of a new person. Assuming it's a costly operation, we're only allowed to take one person's resource and divide it between these two people.

Problem Definition

Definitions

- β_{N} - length of the largest part after N points have been placed
- θ_{N} - length of the smallest part after N points have been placed
- $f_{\beta_{N}}=\frac{\left(\beta_{N}-\frac{1}{N}\right)}{\frac{1}{N}}=N \beta_{N}-1$
- $f_{\theta_{N}}=\frac{\left(\frac{1}{N}-\theta_{N}\right)}{\frac{1}{N}}=1-N \theta_{N}$
- $R_{N}=\frac{\beta_{N}}{\theta_{N}}$
- $D C(N)=\sum_{i=0}^{N-1}\left|\frac{1}{N}-g_{i}\right|$

Binary Splitting

Proposition

When a new recipient arrives, break the largest part into two equal pieces.

$$
\begin{aligned}
& \text { Remark } \\
& \text { If } N=2^{j} \text { then } \beta_{N}=\theta_{N}=1 / N \text { and } R_{N}=1 \\
& \text { If } 2^{j}<N<2^{j+1} \text { then } \theta_{N}=1 / 2 \beta_{N} \text {, and } R_{N}=2
\end{aligned}
$$

Log Breaking

Proposition

When a new recipient arrives, break the largest part in the following way:

$$
\begin{gathered}
\lg \left(1+\frac{1}{N}\right)=\lg \left(1+\frac{1}{2 N}\right)+\lg \left(1+\frac{1}{2 N+1}\right) \\
\lg \left(1+\frac{1}{2 N}\right)+\lg \left(1+\frac{1}{2 N+1}\right)= \\
\lg \left(\frac{2 N+1}{2 N} \cdot \frac{2 N+2}{2 N+1}\right)= \\
\lg \left(\frac{2 N+2}{2 N}\right)=\lg \left(1+\frac{1}{N}\right)
\end{gathered}
$$

Log Breaking

Definition

$U_{N}=<u_{i}>{ }_{i=0}^{N-1}$ is the sequence of labels of the first N points on the circle, in clockwise order, starting from 0.

Observation

Let G_{N} be the sorted sequence of gap sizes in descending order when N points have been placed. In log breaking,

$$
G_{N}=<\lg \left(1+\frac{1}{N}\right), \lg \left(1+\frac{1}{N+1}\right), \ldots, \lg \left(1+\frac{1}{2 N-1}\right)
$$

Log Breaking

Observation

Let G_{N} be the sorted sequence of gap sizes in descending order when N points have been placed. In log breaking,

$$
G_{N}=<\lg \left(1+\frac{1}{N}\right), \lg \left(1+\frac{1}{N+1}\right), \ldots, \lg \left(1+\frac{1}{2 N-1}\right)
$$

It follows that

$$
\begin{gathered}
f_{\beta_{N}}=N \cdot \lg \left(1+\frac{1}{N}-1\right)=\lg \left(1+\frac{1}{N}\right)^{N}-1 \\
f_{\theta_{N}}=1-\lg \left(1+\frac{1}{2 N-1}\right)^{N} \\
R_{N}=\frac{\lg \left(1+\frac{1}{N}\right)}{\lg \left(1+\frac{1}{2 N-1}\right)}
\end{gathered}
$$

Log Breaking

Observation

$$
\begin{gathered}
\lim _{N->\infty} N \beta_{N}=\lg (e)=1.44269 \ldots \\
\lim _{N->\infty} N \theta_{N}=0.721347 \ldots \\
\lim _{N->\infty} R_{N}=2 \\
\lim _{N->\infty} f_{\beta_{N}}=0.44269 \ldots
\end{gathered}
$$

Log Breaking

Example

$$
\begin{gathered}
G_{2}=<0.58,0.42> \\
G_{3}=<0.42,0.32,0.26> \\
G_{4}=<0.32,0.26,0.23,0.19> \\
G_{5}=<0.26,0.23,0.19,0.17,0.15>
\end{gathered}
$$

Log Breaking

Log Breaking

Observation

$$
\begin{gathered}
U_{1}=<0> \\
U_{2}=<0,1> \\
U_{4}=<0,2,1,3> \\
U_{8}=<0,4,2,5,1,6,3,7>
\end{gathered}
$$

Benford Distribution

Definition

Let $X=p_{1} p_{2} p_{3} \ldots p_{r}$ be a positive integer written in decimal notation, then $L S D(X)=p_{1}$

Definition

For each N,

$$
P_{N}=\frac{\left\{m_{i}: L S D\left(m_{i}\right)<p_{1}, i=1,2, \ldots N\right\}}{N}
$$

then

$$
P\left(L S D(X)<p_{1}\right)=\lim _{N->\infty} P_{N}
$$

Benford Distribution

Definition

Let M be an infinite sequence of positive integers, then M is a Benford sequence iff for $X \in M$

$$
P\left(L S D(X)<p_{1}\right)=\log p_{1}, \text { for each, } p_{1} \in\{1,2, \ldots, 10\}
$$

or

$$
P\left(L S D(X)=p_{1}\right)=\log \left(p_{1}+1\right)-\log p_{1}=\log \left(1+\frac{1}{p_{1}}\right.
$$

Benford Distribution

Benford Distribution

d	$P(d)$	
1	Relative size of $P(d)$	
20.1%		
2	17.6%	
3	12.5%	
4	9.7%	
5	7.9%	
6	6.7%	
7	5.8%	
8	5.1%	
9	4.6%	

Benford Distribution

Benford Distribution

A logarithmic scale bar. Picking a random x position uniformly on this number line, roughly 30% of the time the first digit of the number will be 1 .

Benford Distribution

Distributions known to obey Benford's law: Fibonacci numbers, the factorials, the powers of two, and the powers of almost any other number. Distributions known to disobey Benford's law: the square roots and reciprocals.

Zipf's Law

Zipf's Law

Benford Distribution

Definition

Let M be an infinite sequence of positive integers, then M is a Benford sequence iff for $X \in M$

$$
P\left(L S D(X)<p_{1}\right)=\log p_{1}, \text { for each, } p_{1} \in\{1,2, \ldots, 10\}
$$

or

$$
P\left(L S D(X)=p_{1}\right)=\log \left(p_{1}+1\right)-\log p_{1}=\log \left(1+\frac{1}{p_{1}}\right)
$$

Benford Distribution

Benford Distribution

Definition

Let $X=p_{1} p_{2} p_{3} \ldots p_{r}$ be a positive integer written in decimal notation, then $L S D_{r}(X)=p_{1} p_{2} \ldots p_{r}$

Definition

Let M be an infinite sequence of positive integers, then M is a r-Benford sequence iff for $X \in M$

$$
P\left(L S D_{r}(X)<p_{1} p_{2} \ldots p_{r}\right)=\log p_{1} \cdot p_{2} \ldots p_{r}=\log p_{1} p_{2} p_{r}-(r-1)
$$

Golden Hops

We present a modified version of the problem: previously, the choice of new point placement was unrestricted. Now we can only choose constant C and every point is placed C units after the previous one.

Observation

If C is rational $(C=p / q)$ then after placing $q+1$ points we placed two points in the same spot, obtaining a gap of size 0 . Therefore C has to be irrational.

Golden Hops

Definition

The golden section τ is a real number defined by $\tau=(\sqrt{5}-1) / 2=0.618 \ldots$

```
Three-gap Theorem
If \(C\) is any irrational number, then the gaps occur in either two or three sizes.
```


Three-gap Theorem

Three-gap Theorem

Three-gap Theorem

Three-gap Theorem

$$
G_{16}^{U}=<\tau^{7}, \tau^{6}, \tau^{5}, \tau^{6}, \tau^{7}, \tau^{6}, \tau^{5}, \tau^{6}, \tau^{5}, \tau^{6}, \tau^{7}, \tau^{6}, \tau^{5}, \tau^{6}, \tau^{5}, \tau^{6}>
$$

Golden Hops

Golden Hops

Now, if $F_{j}<N<F_{j+1}$, where $j \geq 3$, and $Q_{N}\left(\tau^{j}\right)$ is the number of gaps of size τ^{j}, then:

$$
\begin{aligned}
Q_{N}\left(\tau^{j-2}\right) & =F_{j+1}-N \\
Q_{N}\left(\tau^{j-1}\right) & =N-F_{j-1} \\
Q_{N}\left(\tau^{j}\right) & =N-F_{j}
\end{aligned}
$$

Random Gaps

Random from the origin

Suppose that, we have N independent random variables, $X_{1}, \ldots X_{N}$ from \mathbb{R}^{+}. We order them in an increasing sequence S, such that $X_{i+1, N}>X_{i, N}$. Let $F_{h}(x)=P\left(X_{h} \leq x\right)$ be the distribution function for $X_{h, N}$. That is, $F_{h}(x)$ is the probability that at least h of the random variables are less than or equal to x, hence

$$
F_{h}(x)=\sum_{i=h}^{N}\binom{N}{i} F^{i}(x)(1-F(x))^{N-i}
$$

Random Gaps

Lemma

$E\left(X_{h, N}\right)=\frac{h}{N+1}$.
Let's calculate the expected value of h-th gap g_{h}.

$$
\begin{gathered}
g_{h}=X_{h, N}-X_{h-1, N} \\
\sum g_{h}=\sum_{i=0}^{N} X_{i+1, N}-X_{i, N}=X_{N+1, N}-X_{0, N}=1
\end{gathered}
$$

We know that the expected values of all gaps are equal, as rotating points creates the same gaps in shifted order. Therefore $E\left(g_{h}\right)=\frac{1}{N+1}$

Random Gaps

Lemma

$E\left(X_{h, N}\right)=\frac{h}{N+1}$.
$X_{h, N}$ can be expressed as $g_{0}+g_{1}+\ldots+g_{h-1}$.
Therefore $E\left(X_{h, N}\right)=E\left(g_{0}+\ldots+g_{h-1}\right)=\frac{h}{N+1}$

Random Gaps

The smallest gap

Let g_{S} be the smallest gap.

$$
P\left(g_{S}>x\right)=1-F_{1}(x)=(1-N x)^{N-1}
$$

It follows that

$$
E\left(g_{S}\right)=\int_{0}^{1 / N}(1-N x)^{N-1} d x=\frac{1}{N^{2}}
$$

The largest gap
Let g_{L} be the smallest gap.

$$
E\left(g_{L}\right)=\frac{H_{N}}{N}
$$

Results

Log breaking

$$
\begin{gathered}
\lim _{N->\infty} \phi_{N}=\frac{1}{\ln 2}=1.443 \ldots \\
\lim _{N \rightarrow \infty} \Omega_{N}=\frac{1}{2 \cdot \ln 2}=0.721 \ldots \\
\lim _{N-\infty} R_{n}=2
\end{gathered}
$$

Binary splitting

$$
\begin{array}{r}
\lim _{N->\infty} \sup \phi_{N}=2 \\
\lim _{N->\infty} \inf \phi_{N}=1 \\
\lim _{N->\infty} \sup \Omega=1 \\
\lim _{N->\infty} \inf \Omega_{N}=\frac{1}{2}
\end{array}
$$

Results

Golden Hops

$$
\begin{gathered}
\lim _{N->\infty} \sup \phi_{N}=\frac{1}{\left(\sqrt{5} \rho^{3}\right)}=1.894 \ldots \\
\lim _{N->\infty} \inf \phi_{N}=\frac{1}{\left(\sqrt{5} \rho^{2}\right)}=1.171 \ldots \\
\lim _{N->\infty} \sup \Omega_{N}=\frac{1}{(\sqrt{5} \rho)}=0.724 \ldots \\
\lim _{N->\infty} \inf \Omega_{N}=\frac{1}{(\sqrt{5})}=0.447 \ldots \\
R_{N}= \begin{cases}\frac{1}{\tau} & \text { if } N=F_{j} \\
\frac{1}{\tau^{2}} & \text { otherwise }\end{cases}
\end{gathered}
$$

Results

Random

$$
E\left(\frac{g_{L}}{g_{S}}\right)=N \cdot \sum_{k=1}^{N} \frac{1}{k}=N \cdot H_{N}
$$

